img

Notice détaillée

Stacked denoising autoencoder for missing traffic data reconstruction via mobile edge computing

Article Ecrit par: Dai, Penglin ; Luo, Jingtao ; Zhao, Kangli ; Xing, Huanlai ; Wu, Xiao ;

Résumé: Traffic sensing system requires to periodically collect spatial–temporal traffic data distributed among road networks, which results in overhigh bandwidth consumption and storage cost in a large-scale road network. Several compressive sensing-based algorithms are proposed to reconstruct missing traffic data with limited traffic observation. However, there still exist great challenges to be addressed. First, these existing algorithms are always iteration-based, whose time complexity will explosively increase with the growth of network scale. Furthermore, these algorithms have to be re-executed even if only a small fraction of data changes, which is not suitable for dynamic traffic environments. To overcome these issues, we investigate a novel service architecture of traffic sensing based on mobile edge computing where collected data is pre-processed at the edge node and reconstructed at cloud servers, respectively. On this basis, we formulate the problem of Missing Traffic Data reconstruction (MTDR), which aims at maximizing data reconstruction accuracy within limited observation data. Further, we develop a deep-learning-based algorithm called stacked denoising autoencoder for MTDR (SDAE-MTDR), where three denoising autoencoders are trained in order and then stacked together for parameter fine-tuning based on cross-entropy-based loss function. Finally, we conduct comprehensive performance evaluation based on realistic vehicular traces and the simulation results demonstrate the superiority of the proposed algorithm compared with competitive solutions.


Langue: Anglais