Affect-AwareWord Clouds
Article Ecrit par: Kulahcioglu, Tugba ; De Melo, Gerard ;
Résumé: Word clouds are widely used for non-analytic purposes, such as introducing a topic to students, or creating a gift with personally meaningful text. Surveys show that users prefer tools that yield word clouds with a stronger emotional impact. Fonts and color palettes are powerful typographical signals that may determine this impact. Typically, these signals are assigned randomly, or expected to be chosen by the users. We present an affect-aware font and color palette selection methodology that aims to facilitate more informed choices. We infer associations of fonts with a set of eight affects, and evaluate the resulting data in a series of user studies both on individual words as well as in word clouds. Relying on a recent study to procure affective color palettes, we carry out a similar user study to understand the impact of color choices on word clouds. Our findings suggest that both fonts and color palettes are powerful tools contributing to the affects evoked by a word cloud. The experiments further confirm that the novel datasets we propose are successful in enabling this. We also find that, for the majority of the affects, both signals need to be congruent to create a stronger impact. Based on this data, we implement a prototype that allows users to specify a desired affect and recommends congruent fonts and color palettes for the word.
Langue:
Anglais