Deep Reinforcement Learning for Tropical Air Free-cooled Data Center Control
Article Ecrit par: Le, Duc Van ; Tan, Rui ; Wang, Rongrong ; Liu, Yingbo ; Wong, Yew-Wah ; Wen, Yonggang ;
Résumé: Air free-cooled data centers (DCs) have not existed in the tropical zone due to the unique challenges of year-round high ambient temperature and relative humidity (RH). The increasing availability of servers that can tolerate higher temperatures and RH due to the regulatory bodies' prompts to raise DC temperature setpoints sheds light upon the feasibility of air free-cooled DCs in the tropics. However, due to the complex psychrometric dynamics, operating the air free-cooled DC in the tropics generally requires adaptive control of supply air condition to maintain the computing performance and reliability of the servers. This article studies the problem of controlling the supply air temperature and RH in a free-cooled tropical DC below certain thresholds. To achieve the goal, we formulate the control problem as Markov decision processes and apply deep reinforcement learning (DRL) to learn the control policy that minimizes the cooling energy while satisfying the requirements on the supply air temperature and RH. We also develop a constrained DRL solution for performance improvements. Extensive evaluation based on real data traces collected from an air free-cooled testbed and comparisons among the unconstrained and constrained DRL approaches as well as two other baseline approaches show the superior performance of our proposed solutions.
Langue:
Anglais