img

Notice détaillée

Queec: QoE-aware edge computing for IoT devices under dynamic workloads

Article Ecrit par: Li, Borui ; Bu, Jiajun ; Dong, Wei ; Gu, Tao ; Gao, Yi ; Guan, Gaoyang ; Zhang, Jiadong ;

Résumé: Many IoT applications have the requirements of conducting complex IoT events processing (e.g., speech recognition) that are hardly supported by low-end IoT devices due to limited resources. Most existing approaches enable complex IoT event processing on low-end IoT devices by statically allocating tasks to the edge or the cloud. In this article, we present Queec, a QoE-aware edge computing system for complex IoT event processing under dynamic workloads. With Queec, the complex IoT event processing tasks that are relatively computation-intensive for low-end IoT devices can be transparently offloaded to nearby edge nodes at runtime. We formulate the problem of scheduling multi-user tasks to multiple edge nodes as an optimization problem, which minimizes the overall offloading latency of all tasks while avoiding the overloading problem. We implement Queec on low-end IoT devices, edge nodes, and the cloud. We conduct extensive evaluations, and the results show that Queec reduces 56.98% of the offloading latency on average compared with the state-of-the-art under dynamic workloads, while incurring acceptable overhead.


Langue: Anglais