img

Notice détaillée

DeepHeart

A Deep Learning Approach for Accurate Heart Rate Estimation from PPG Signals

Article Ecrit par: Chang, Xiangmao ; Xing, Guoliang ; Li, Gangkai ; Zhu, Kun ; Tu, Linlin ;

Résumé: Heart rate (HR) estimation based on photoplethysmography (PPG) signals has been widely adopted in wristworn devices. However, the motion artifacts caused by the user's physical activities make it difficult to get the accurate HR estimation from contaminated PPG signals. Although many signal processing methods have been proposed to address this challenge, they are often highly optimized for specific scenarios, making them impractical in real-world settings where a user may perform a wide range of physical activities. In this article, we propose DeepHeart, a new HR estimation approach that features deep-learning-based denoising and spectrum-analysis-based calibration. DeepHeart generates clean PPG signals from electrocardiogram signals based on a training data set. Then a set of denoising convolutional neural networks (DCNNs) are trained with the contaminated PPG signals and their corresponding clean PPG signals. Contaminated PPG signals are then denoised by an ensemble of DCNNs and a spectrum-analysis-based calibration is performed to estimate the final HR. We evaluate DeepHeart on the IEEE Signal Processing Cup training data set with 12 records collected during various physical activities. DeepHeart achieves an average absolute error of 1.61 beats per minute (bpm), outperforming a state-of-the-art deep learning approach (4 bpm) and a classical signal processing approach (2.34 bpm).


Langue: Anglais