img

Notice détaillée

DLRF-Net

A Progressive Deep Latent Low-Rank Fusion Network for Hierarchical Subspace Discovery

Article Ecrit par: Zhang, Zhao ; Yan, Shuicheng ; Zhang, Zheng ; Liu, Guangcan ; Ren, Jiahuan ; Zhang, Haijun ;

Résumé: Low-rank coding-based representation learning is powerful for discovering and recovering the subspace structures in data, which has obtained an impressive performance; however, it still cannot obtain deep hidden information due to the essence of single-layer structures. In this article, we investigate the deep low-rank representation of images in a progressive way by presenting a novel strategy that can extend existing single-layer latent low-rank models into multiple layers. Technically, we propose a new progressive Deep Latent Low-Rank Fusion Network (DLRF-Net) to uncover deep features and the clustering structures embedded in latent subspaces. The basic idea of DLRF-Net is to progressively refine the principal and salient features in each layer from previous layers by fusing the clustering and projective subspaces, respectively, which can potentially learn more accurate features and subspaces. To obtain deep hidden information, DLRF-Net inputs shallow features from the last layer into subsequent layers. Then, it aims at recovering the hierarchical information and deeper features by respectively congregating the subspaces in each layer of the network. As such, one can also ensure the representation learning of deeper layers to remove the noise and discover the underlying clean subspaces, which will be verified by simulations. It is noteworthy that the framework of our DLRF-Net is general and is applicable to most existing latent low-rank representation models, i.e., existing latent low-rank models can be easily extended to the multilayer scenario using DLRF-Net. Extensive results on real databases show that our framework can deliver enhanced performance over other related techniques.


Langue: Anglais