img

Notice détaillée

Unified Relevance Models for Rating Prediction in Collaborative Filtering

Article Ecrit par: Wang, Jun ; DE Vries, Arjen P. ; Reinders, Marcel J. T. ;

Résumé: Collaborative filtering aims at predicting a user’s interest for a given item based on a collection of user profiles. This article views collaborative filtering as a problem highly related to information retrieval, drawing an analogy between the concepts of users and items in recommender systems and queries and documents in text retrieval. We present a probabilistic user-to-item relevance framework that introduces the concept of relevance into the related problem of collaborative filtering. Three different models are derived, namely, a user-based, an item-based, and a unified relevance model, and we estimate their rating predictions from three sources: the user’s own ratings for different items, other users’ ratings for the same item, and ratings from different but similar users for other but similar items. To reduce the data sparsity encountered when estimating the probability density function of the relevance variable, we apply the nonparametric (data-driven) density estimation technique known as the Parzen-window method (or kernel-based density estimation). Using a Gaussian window function, the similarity between users and/or items would, however, be based on Euclidean distance. Because the collaborative filtering literature has reported improved prediction accuracy when using cosine similarity, we generalize the Parzen-window method by introducing a projection kernel.


Langue: Anglais