SALSA
the stochastic approach for link-structure analysis
Article Ecrit par: Lempel, R. ; Moran, S. ;
Résumé: Today, when searching for information on the WWW, one usually performs a query through a term-based search engine. These engines return, as the query's result, a list of Web pages whose contents matches the query. For broad-topic queries, such searches often result in a huge set of retrieved documents, many of which are irrelevant to the user. However, much information is contained in the link-structure of the WWW. Information such as which pages are linked to others can be used to augment search algorithms. In this context, Jon Kleinberg introduced the notion of two distinct types of Web pages: hubs and authorities. Kleinberg argued that hubs and authorities exhibit a mutually reinforcing relationship: a good hub will point to many authorities, and a good authority will be pointed at by many hubs. In light of this, he dervised an algoirthm aimed at finding authoritative pages. We present SALSA, a new stochastic approach for link-structure analysis, which examines random walks on graphs derived from the link-structure. We show that both SALSA and Kleinberg's Mutual Reinforcement approach employ the same metaalgorithm. We then prove that SALSA is quivalent to a weighted in degree analysis of the link-sturcutre of WWW subgraphs, making it computationally more efficient than the Mutual reinforcement approach. We compare that results of applying SALSA to the results derived through Kleinberg's approach. These comparisions reveal a topological Phenomenon called the TKC effectwhich, in certain cases, prevents the Mutual reinforcement approach from identifying meaningful authorities.
Langue:
Anglais