img

Notice détaillée

Implantable Closed-Loop Epilepsy Prosthesis

Modeling, Implementation and Validation

Article Ecrit par: Tariqus, Salam Muhammad ; Khoa Nguyen, Dang ; Sawan, Mohamed ;

Résumé: In this article, we present an implantable closed-loop epilepsy prosthesis, which is dedicated to automatically detect seizure onsets based on intracerebral electroencephalographic (icEEG) recordings from intracranial electrode contacts and provide an electrical stimulation feedback to the same contacts in order to disrupt these seizures. A novel epileptic seizure detector and a dedicated electrical stimulator were assembled together with common recording electrodes to complete the proposed prosthesis. The seizure detector was implemented in CMOS 0.18-µm by incorporating a new seizure detection algorithm that models timeamplitude and -frequency relationship in icEEG. The detector was validated offline on ten patients with refractory epilepsy and showed excellent performance for early detection of seizures. The electrical stimulator, used for suppressing the developing seizure, is composed of two biphasic channels and was assembled with embedded FPGA in a miniature PCB. The stimulator efficiency was evaluated on cadaveric animal brain tissue in an in vitro morphologic electrical model. Spatial characteristics of the voltage distribution in cortex were assessed in an attempt to identify optimal stimulation parameters required to affect the suspected epileptic focus. The experimental results suggest that lower frequency stimulation parameters cause significant amount of shunting of current through the cerebrospinal fluid; however higher frequency stimulation parameters produce effective spatial voltage distribution with lower stimulation charge.


Langue: Anglais