img

تفاصيل البطاقة الفهرسية

An efficient lightweight convolutional neural network for industrial surface defect detection

مقال من تأليف: Zhang, Dehua ; Liu, Wei ; Hao, Xinyuan ; Wang, Dechen ; Qin, Chunbin ; Zhao, Bo ; Liang, Linlin ;

ملخص: Since surface defect detection is significant to ensure the utility, integrality, and security of productions, and it has become a key issue to control the quality of industrial products, which arouses interests of researchers. However, deploying deep convolutional neural networks (DCNNs) on embedded devices is very difficult due to limited storage space and computational resources. In this paper, an efficient lightweight convolutional neural network (CNN) model is designed for surface defect detection of industrial productions in the perspective of image processing via deep learning. By combining the inverse residual architecture with coordinate attention (CA) mechanism, a coordinate attention mobile (CAM) backbone network is constructed for feature extraction. Then, in order to solve the small object detection problem, the multi-scale strategy is developed by introducing the CA into the cross-layer information flow to improve the quality of feature extraction and augment the representation ability on multi-scale features. Hereafter, the multi-scale feature is integrated to design a novel bidirectional weighted feature pyramid network (BWFPN) to improve the model detection accuracy without increasing much computational burden. From the comparative experimental results on open source datasets, the effectiveness of the developed lightweight CNN is evaluated, and the detection accuracy attains on par with the state-of-the-art (SOTA) model with less parameters and calculation.


لغة: إنجليزية