img

تفاصيل البطاقة الفهرسية

Few-Shot Food Recognition via Multi-View Representation Learning

مقال من تأليف: Jiang, Shuqiang ; Min, Weiqing ; Lyu, Yongqiang ; Liu, Linhu ;

ملخص: This article considers the problem of few-shot learning for food recognition. Automatic food recognition can support various applications, e.g., dietary assessment and food journaling. Most existing works focus on food recognition with large numbers of labelled samples, and fail to recognize food categories with few samples. To address this problem, we propose a Multi-View Few-Shot Learning (MVFSL) framework to explore additional ingredient information for few-shot food recognition. Besides category-oriented deep visual features, we introduce ingredient-supervised deep network to extract ingredient-oriented features. As general and intermediate attributes of food, ingredient-oriented features are informative and complementary to category-oriented features, and thus they play an important role in improving food recognition. Particularly in few-shot food recognition, ingredient information can bridge the gap between disjoint training categories and test categories. To take advantage of ingredient information, we fuse these two kinds of features by first combining their feature maps from their respective deep networks and then convolving combined feature maps. Such convolution is further incorporated into a multi-view relation network, which is capable of comparing pairwise images to enable fine-grained feature learning. MVFSL is trained in an end-to-end fashion for joint optimization on two types of feature learning subnetworks and relation subnetworks. Extensive experiments on different food datasets have consistently demonstrated the advantage of MVFSL in multi-view feature fusion. Furthermore, we extend another two types of networks, namely, Siamese Network and Matching Network, by introducing ingredient information for few-shot food recognition. Experimental results have also shown that introducing ingredient information into these two networks can improve the performance of few-shot food recognition.


لغة: إنجليزية