img

تفاصيل البطاقة الفهرسية

High-quality Frame Recurrent Video De-raining with Multi-contextual Adversarial Network

مقال من تأليف: Kumar Sharma, Prasen ; Ghosh, Sujoy ; Sur, Arijit ;

ملخص: In this article, we address the problem of rain-streak removal in the videos. Unlike the image, challenges in video restoration comprise temporal consistency besides spatial enhancement. The researchers across the world have proposed several effective methods for estimating the de-noised videos with outstanding temporal consistency. However, such methods also amplify the computational cost due to their larger size. By way of analysis, incorporating separate modules for spatial and temporal enhancement may require more computational resources. It motivates us to propose a unified architecture that directly estimates the de-rained frame with maximal visual quality and minimal computational cost. To this end, we present a deep learning-based Frame-recurrent Multi-contextual Adversarial Network for rain-streak removal in videos. The proposed model is built upon a Conditional Generative Adversarial Network (CGAN)-based framework where the generator model directly estimates the de-rained frame from the previously estimated one with the help of its multi-contextual adversary. To optimize the proposed model, we have incorporated the Perceptual loss function in addition to the conventional Euclidean distance. Also, instead of traditional entropy loss from the adversary, we propose to use the Euclidean distance between the features of de-rained and clean frames, extracted from the discriminator model as a cost function for video de-raining. Various experimental observations across 11 test sets, with over 10 state-of-the-art methods, using 14 image-quality metrics, prove the efficacy of the proposed work, both visually and computationally.


لغة: إنجليزية