Computing the minimum-support for mining frequent patterns
مقال من تأليف: Zhang, Shichao ; Wu, Xindong ; Zhang, Chengqi ;
ملخص: Frequent pattern mining is based on the assumption that users can specify the minimum-support for mining their databases. It has been recognized that setting the minimum-support is a difficult task to users. This can hinder the widespread applications of these algorithms. In this paper we propose a computational strategy for identifying frequent itemsets, consisting of polynomial approximation and fuzzy estimation. More specifically, our algorithms (polynomial approximation and fuzzy estimation) automatically generate actual minimum-supports (appropriate to a database to be mined) according to users’ mining requirements. We experimentally examine the algorithms using different datasets, and demonstrate that our fuzzy estimation algorithm fittingly approximates actualminimum-supports from the commonly-used requirements.
لغة:
إنجليزية