img

تفاصيل البطاقة الفهرسية

Sentiment Classification with Interpolated Information Diffusion Kernels

مقال من تأليف: Raaijmakers, Stephan ;

ملخص: Information di usion kernels - similarity metrics in non- Euclidean information spaces - have been found to produce state of the art results for document classi cation. In this paper, we present a novel approach to global sentiment classification using these kernels. We carry out a large array of experiments addressing the well-known movie review data set of Pang and Lee, a de facto benchmark, comparing information di usion kernels with a standard RBF kernel ma- chine. Our results show that interpolation of unigram and bigram information is bene ciary for sentiment classification.


لغة: إنجليزية