REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE

INSTITUT D'INFORMATIQUE

THESE

Présentée à L'USTHB pour l'obtention du grade de MAGISTER EN INFORMATIQUE

Par

Mr DJOUDI MOHAMMED

TOLERANCE AUX FAUTES DANS LES SYSTEMES REPARTIS: CAS DE L'ELECTION SUR UN ANNEAU UNIDIRECTIONNEL

Thèse soutenue devant le jury composé de:

Mr Z. BELMESK Maître de Conférences USTHB Président.

Mme H. DRIAS Maître de Conférences USTHB Examinatrice.

Mme F. CHERIEF Maître de Conférences USTHB Examinatrice.

Mr H. KHELALFA Chargé de Recherche CERIST Examinateur.

Mr N. BADACHE Chargé de cours USTHB Rapporteur.

Numéro d'Ordre: Année: 1996

Résumé de thèse

L'exigence de tolérance aux fautes est incontournable dans les systèmes répartis.

En effet, l'incertitude introduite par l'existence de délais de communication variables, et par la non sûreté de fonctionnement des processeurs et des moyens de communication montrent que la tolérance aux fautes est un souci inhérent aux systèmes répartis.

Les travaux présentés dans cette thèse portent sur la tolérance aux fautes dans les systèmes répartis et ont conduit à la conception d'un algorithme d'élection sur un anneau unidirectionnel; algorithme tolérant à la perte du message d'élection.

L'algorithme conçu a été formellement spécifié en Estelle et validé par simulation en l'absence et en présence de fautes.

Enfin, nous présentons et appliquons une méthode éprouvée de vérification des propriétés générales et spécifiques d'une application répartie pour vérifier la propriété particulière de notre algorithme: « en cas de perte du message d'élection, sa régénération a toujours lieu ». Cette technique dite de projection procède d'une réduction du graphe d'accessibilité de l'application considérée et est basée sur des principes d'équivalence observationnelle de systèmes de transitions.

<u>Mots clés:</u> Sûreté de fonctionnement, Tolérance aux fautes, Systèmes répartis, Election, Spécification, Validation, Vérification, Equivalence Observationnelle.

REMERCIEMENTS

Je tiens à exprimer ma profonde gratitude à Monsieur N.Badache, chargé de cours à l'USTHB, qui a accepté la lourde charge de diriger mes travaux. Je le remercie profondément pour les conseils, l'enthousiasme et l'amitié qu'il m'a apportés tout au long de ces années de thèse.

Je remercie vivement Monsieur Z.Belmesk, maître de conférences à l'institut d'informatique USTHB, pour l'honneur qu'il me fait en présidant le jury de thèse, ainsi que:

Madame H.Drias, maître de conférences institut d'informatique, USTHB Madame F.Chrief, maître de conférences institut d'informatique, USTHB Monsieur A.Khelalfa, chargé de recherche, CERIST pour l'honneur qu'ils me font en participant à ce jury.

J'adresse un remerciement tout particulier à Monsieur D.Saidouni, chercheur algérien au LAAS/CNRS, pour son soutien constant et pour la grande disponibilité dont il a fait preuve durant mon séjour à Toulouse.

Mes remerciements s'étendent à l'ensemble des membres du groupe TSF du LAAS/CNRS et à leur tête Monsieur J.C.Laprie pour l'accueil si chaleureux qu'ils m'ont réservé durant mon séjour à Toulouse; ainsi qu'aux membres du groupe OLC particulièrement Monsieur K.Drira.

Enfin, c'est plus qu'un devoir, de remercier sincèrement tous les enseignants qui ont contribué de près ou de loin à ma formation.

TABLE DES MATIERES

CHAPITRE1: CONCEPTS DE BASE ET TERMINOLOGIE

1 Introduction	1
2 Définitions de base	1
3 Modèles de système	3
4 Spécification d'un système	4
5 Entraves à la sûreté de fonctionnement	5
5.1 Les défaillances	5
5.2 Les erreurs	7
5.3 Les fautes	8
5.4 Pathologie des fautes	10
6 Moyens pour la sûreté de fonctionnement	11
6.1 Tolérance aux fautes	
6.2 Elimination des fautes	13
6.3 Prévision des fautes	14
7 Conclusion	15
CHAPITRE 2: TOLERANCE AUX FAUTES ET REPARTTION	
1 Introduction	16
2 Les algorithmes répartis	17
2.1 Définition	17
2.2 Propriétés des algorithmes répartis	17
2.3 La synchronisation entre processus	20
2.3.1 Synchronisation due à la compétition	21
2.3.2 Synchronisation due a la coordination	21
2.4 Classes d'algorithmes repartis	22
2.4.1 Calcul de fonction	22
2.4.2 Réalisation de service	22
2.4.3 Réalisation d'une observation	23
3 Tolérance aux fautes et répartition	23
3.1 Entraves à la sûreté de fonctionnement	24
3.2 Hypothèses et abstractions	26
4 Schémas de traitement réparti	28
4.1 Les processus communicants	28
4.1.1 Tolérance aux fautes à base de mémoire stable	29
4.1.2 Tolérance aux fautes basée sur la réplication de processus	30
5 Conclusion	31

1 Introduction	32
2 La technique de description Estelle	
2.1 Principaux concepts Estelle	
	34
	37
	38
	38
3.1.2 Fonctionnalités	39
3.2 Environnement Estim	40
4 Conclusion	41
CHAPITRE 4 : TECHNIQUE DE VERIFICATION PAR PROJEC	CTIONS
1 Introduction	42
2 La vérification par projections	44
3 Equivalence observationnelle des systèmes de transitions	
3.1 Définitions et notations	
3.2 Concept de bisimulation	
3.3 Equivalence observationnelle	48
4 Conclusion	51
CHAPITRE 5 : EXPERIMENTATION	
1 Introduction	52
2 Contexte de notre étude	52
2.1 Présentation générale	52
2.2 Classe de fautes considérée	53
2.3 Les problèmes à résoudre :	53
3 Présentation de l'algorithme de Chang et Roberts	54
4 Présentation de l'algorithme de Raynal	55
5 Validation et vérification de l'algorithme conçu	56
5.1 Méthodologie adoptée	56

CHAPITRE 3: LA TECHNIQUE DE DESCRIPTION FORMELLE ESTELLE

5.2 Phase sans injection de fautes	57
5.2.1 Description de l'algorithme	58
5.2.2 Validation par veda	59
5.2.3 Application de l'équivalence observationnelle	60
5.3 Campagne d'injection de fautes	62
5.3.1 Description de la détection et régénération	64
5.3.2 Validation par veda	64
5.3.3 Application de l'équivalence observationnelle	67
5.3.3.1 Interprétation des graphes quotients	68
5.3.3.1.1 Graphe de la première approche	68
5.3.3.1.2 Graphe de la deuxième approche	70
5.3.3.2 Interprétation des transitions τ:	72
6 Conclusion	74
Annexe 1	77
Annexe 2	82
Annexe 3	83