

THESE

pour l'obtention du grade de

Docteur de l'Université de Poitiers

Faculté des Sciences Fondamentales et Appliquées

(Diplôme National - Arrêté du 30 Mars 1992)

Spécialité : Electronique

- Traitement d'images -

par

Nadia EZZIANE

SEGMENTATION D'IMAGES TEXTUREES PAR ANALYSE MULTI-ECHELLE

Directeur de thèse : M. LEARD Co-encadrement : J. DELAGE

Jury:

J. P. ASSELIN de BEAUVILLE	Professeur, Université de Tours	Rapporteur
J. P. BONNEFOY	Professeur, Université de La Rochelle	Rapporteur
J. F. CAVELLIER	Maître de Conférences, Université de Poitiers	Examinateur
J. DELAGE	Maître de Conférences, Université de Poitiers	Examinateur
R. HARBA	Professeur, Université d'Orléans	Examinateur
M. LEARD	Professeur, Université de Poitiers	Examinateur
C. OLIVIER	Professeur, Université de Poitiers	Examinateur

IRCOM-SIC, UMR 6615 CNRS, Université de Poitiers, UFR SFA Bâtiment SP2MI, Boulevard 3, Téléport 2, BP 179, 86960 Futuroscope Cedex, FRANCE Tel: +33 5.49.49.65.67. Fax: +33 5.49.49.65.70. E-mail: dir@sic.univ-poitiers.fr

Table des matières

	0.1	Introduction						
1	Segr	gmentation d'images						
	1.1	introduction						
	1.2	Description d'une image						
	1.3	Analyse d'images						
	1.4	Segmentation d'images						
		1.4.1 Définition						
		1.4.2 Région						
		1.4.3 Contour et frontière						
	1.5	Segmentation par les niveaux de gris						
		1.5.1 Méthode de détection de contour						
		1.5.2 Méthode de classification						
		1.5.3 Méthode de croissance de régions						
	1.6	Segmentation par la texture						
		1.6.1 Introduction						
		1.6.2 Définition d'une texture						
		1.6.3 Méthodes statistiques						
		1.6.4 Méthodes par modélisation						
		1.6.5 Méthodes morphologiques						
		1.6.6 Méthodes structurelles						
	1.7	Conclusion						
2	Ana	alyse multirésolution 36						
	2.1	La multirésolution						
	2.2 La multirésolution et l'approche espace-fréquence							

2			TABLE DES MATIÈR	ES
		2.2.1	Transformée de Fourier à fenêtre glissante	38
		2.2.2	Transformée de Gabor	39
		2.2.3	Transformée en ondelettes	40
	2.3	Transf	formée en ondelettes continue	43
		2.3.1	Introduction	43
		2.3.2	Ondelettes de Morlet	44
	2.4	La tra	ansformée discrète en ondelettes	45
		2.4.1	Introduction	45
		2.4.2	Ondelettes de Daubechies	45
	2.5	Analy	se d'images en multirésolution	47
		2.5.1	Introduction	47
		2.5.2	Algorithme pyramidal de Burt et Adelson	49
		2.5.3	Filtres miroirs par quadrature	49
		2.5.4	Décomposition sur une base d'ondelettes	50
		2.5.5	La multirésolution et les techniques de segmentation d'images tex-	
			turées	53
3	Segmentation d'images texturées par analyse multi-échelle			57
	3.1	Introd	duction	57
	3.2	Descr	iption de la méthode	58
		3.2.1	Extraction des régions	58
		3.2.2	Détection des frontières	60
	3.3	Mise	en oeuvre de la méthode	66
		3.3.1	Méthodes de filtrage	67
		3.3.2	Construction d'un banc de filtres pour la mise en place d'une	
			analyse multirésolution	69
		3.3.3	Analogie avec la construction d'une transformée en ondelettes :	
			ondelettes de Morlet	71
		3.3.4	Algorithme de filtrage	77
		3.3.5	Traitement dans les quatre directions	86
		3.3.6	Mise en oeuvre de l'algorithme de filtrage	87
	3.4	Affine	ement des frontières et localisation des contours	90
		3.4.1	Ligne de partage des eaux	91

TA	ABLE	DES N	MATIÈRES	3
		3.4.2	Algorithme de suivi de ligne de crête	94
		3.4.3	Conclusion	96
4	Pré	sentati	ion des méthodes de comparaison et des résultats de la seg	<u>-</u>
	mei	ntation	ı	98
	4.1	Introd	uction	98
	4.2	Descri	ption des méthodes utilisées pour la comparaison	99
		4.2.1	Méthode par transformation	99
		4.2.2	Méthode par filtrage	106
		4.2.3	Méthode morphologique pour la comparaison du post-traitement .	109
	4.3	Préser	ntation des images et des résultats	111
		4.3.1	Présentation des images de test et leurs caractéristiques	112
		4.3.2	Présentation des images résultats	114
		4.3.3	Commentaires	122
		4.3.4	Conclusion	123
5	Cor	ıclusio	n générale	125

Résumé

La segmentation d'images est un problème très important en vision par ordinateur. L'originalité de la méthode de segmentation par analyse multi-échelle que nous proposons, repose d'une part sur la mise en place d'un traitement multirésolution basé sur la construction d'un banc de filtres passe-bas, et d'autre part sur l'utilisation simultanée de l'approche frontière et de l'approche par croissance de régions. L'utilisation de cette combinaison à plusieurs échelles a permis de repérer les régions homogènes dans les images traitées et de localiser les frontières qui les délimitent. Les frontières ainsi trouvées sont généralement mal définies et éparses.

Nous avons alors développé une étape supplémentaire de traitement qui a pour objectif d'affiner ces résultats. Cette seconde étape appelée ``post-traitement'' consiste à mettre en œuvre une procédure permettant de détecter tous les points susceptibles de former un contour fin.

Nous utilisons à cette fin la méthode appelée `` Ligne de Partage des Eaux ''. Malgré les exigences diverses de cette méthode, nous avons pu l'adapter à notre type d'images en développant un `` algorithme de suivi de crêtes ''.

Cette méthode de segmentation a été testée et validée sur des images de synthèse. Nous l'avons ensuite appliquée à des images réelles issues de coupes de cerveau ; les résultats obtenus sont également satisfaisants. Elle permet de mettre en évidence de nombreuses régions mal identifiéesavec les méthodes de segmentation classiques

Mots-clés: Segmentation; analyse multi-échelle; images texturées; filtrage.

Abstract

Image segmentation is a very important problem in computer vision. We propose an original segmentation method based on a multi-scale analysis. The segmentation relies on two main steps: we first define a multi-resolution analysis based on the construction of a bench of low filters and we further use simultaneously a boundary approach and a region growing approach. The use of this combination at several scales has allowed to identify the homogeneous regions in the images and to locate their boundaries. The boundaries thus found are generally badly and straggly defined.

We further develop a processing step that has for objective to refine these results. This second stage called "post - processing" consist in implementing a procedure to detect all the candidate points to form a fine contour.

To this end, we use a method called "Watershed". Though this method cannot be directly applied to our case, we have been able to adapt it to our image type using an "algorithm of followed by ridges".

This segmentation has been tested and validated on computer generated images. We also applied it on real images of sections of a brain. We obtained satisfying results: many regions were identified that could not be detected by other classical methods of segmentation.

Key-words: segmentation; multi-scale analysis; textured images; filtering.