THÈSE

présentée à

L'UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR

ÉCOLE DOCTORALE DES SCIENCES EXACTES ET DE LEURS APPLICATIONS

par

Nadjia EL SAADI

pour obtenir le grade de

DOCTEUR

Spécialité : MATHÉMATIQUES APPLIQUÉES

MODÉLISATION ET ETUDES MATHÉMATIQUE ET INFORMATIQUE DE POPULATIONS STRUCTURÉES PAR DES VARIABLES ALÉATOIRES. APPLICATION Á L'AGRÉGATION DU PHYTOPLANCTON.

Soutenue le 10 décembre 2004 :

Après avis de :

Mme. S. Méléard

Professeur, université Paris 10

Rapporteur

Mr. B. Ainseba

Professeur, université Bordeaux 2

Rapporteur

Devant la commission d'examen formée de :

Mme. M. Madaune-Tort

Professeur, Université de Pau et des Pays de l'Adour

Président du jury

Mr. M. Adimy

Maître de conférence HDR, Université de Pau et des Pays de l'Adour

Examinatew

Mme. E. Perrier

Chargée de recherche HDR, Institut de recherche IRD-GEODES

Examinateur

Mr. J-P. Treuil

Chercheur, Institut de recherche IRD-GEODES

Examinateur

Table des matières

Table des figures					
I	Ası	pects biologiques et approches	1		
1	Le p	phénomène d'agrégation en écologie et les méthodes d'étude	2		
	1.1	Les mécanismes d'agrégation	3		
	1.2	L'utilité des modèles d'agrégation	4		
	1.3	Les stratégies de la modélisation	5		
		1.3.1 Modèles Lagrangiens	6		
		1.3.2 Modèles Eulériens	7		
	1.4	Conclusion	9		
2	Le	phytoplancton	11		
	2.1	Description biologique	11		
		2.1.1 Les diatomées	12		
		2.1.2 Les dinoflagellés	14		
	2.2	Croissance et productivité	16		
	2.3	Importance du phytoplancton	17		
	2.4	L'agrégation chez le phytoplancton	18		
	2.5	Conclusion	21		
п	M	odélisation stochastique	22		
3	Pré	liminaires et outils probabilistes	25		
	3.1	Généralités sur les processus stochastiques à temps continu	25		
	3.2	Martingales	27		
	3.3	Mouvement brownien	31		
	3.4	Intégrale stochastique par rapport à une martingale	32		
	3.5	Equations différentielles stochastiques	33		
	3.6	Bruit blanc et mesure martingale au sens de Walsh	36		

			хi					
		3.6.1 Bruit blanc	36					
		3.6.2 Mesure martingale	37					
	37	· · · · · · · · · · · · · · · · · · ·	39					
	J. 1		39 40					
		3.7.2 Ensembles compacts de $D([0,+\infty[,E)$	42					
		3.7.3 Notion de tension et Convergence faible	43					
4	De la description Lagrangienne à une représentation macroscopique des							
		• • •	47					
	4.1	Description Lagrangienne des dynamiques de cellules de phytoplancton	48					
		4.1.1 Mouvement spatial des cellules	48					
		4.1.2 Interactions spatiales	5 0					
		4.1.3 Approximation de Smoluchowski	52					
		4.1.4 Branchement	60					
	4.2	Description macroscopique des cellules de phytoplancton	61					
		4.2.1 Processus approximatif de branchement-diffusion interactif	61					
		4.2.2 Caractérisation martingale	6 2					
5	Convergence faible et passage à la description Eulérienne des cellules de							
•		toplancton	70					
	5.1	Renormalisation du processus de branchement diffusion interactif	71					
	5.2	Convergence faible du processus renormalisé	73					
	5.3	Caractérisation par une équation aux dérivées partielles stochastique	86					
	5.4	Discussion	89					
	5.5	Conclusion	91					
			•					
п	I A	nalyse mathématique	92					
6	Ont	ils mathématiques	96					
•	6.1	Rappels sur les semi-groupes	96					
		6.1.1 Semi-groupe fortement continu	96					
		· · · · · · · · · · · · · · · · · · ·	100					
			101					
	6.2		102					
	0.2							
			103					
		(3 / 1)	103					
	6.9		104					
	6.3	· · · · · · · · · · · · · · · · · ·	105					
			106					
		6.3.2 Degré topologique sur des espaces de dimension infinie	109					
7	Etu	de du problème de Cauchy 1	11					
	7.1	Formulation abstraite du problème de Cauchy	111					
	72	Existence locale des solutions	112					

			xii						
	7.3	Existence globale des solutions	121						
	7.4	Regularité	129						
8	Exis	stence de solutions stationnaires	134						
	8.1	Problème du point fixe	134						
	8.2	Solutions à l'état d'équilibre	136						
	8.3	Conclusion	139						
I	<i>F</i>	tude informatique	140						
9	Sim	ulateur des comportements d'agrégation	143						
	9.1	Modèle du simulateur	143						
	9.2	Description du simulateur	144						
	9.3	Interface du simulateur	148						
	9.4	Algorithme et dynamique du simulateur	150						
	9.5	Conclusion	154						
10	Sim	ulations et résultats	155						
	10.1	Indicateurs d'agrégation	158						
		10.1.1 Indice de Clark Evans	158						
		10.1.2 Indice de Sur-dispersion	158						
	10.2	Scénarios simulés	159						
	10.3	Résultats	161						
		10.3.1 Indice de Clark-Evans	161						
		10.3.2 Distribution spatio-temporelle	161						
		10.3.3 Indice de Surdispersion	165						
		10.3.4 Effet de la diffusion	166						
		10.3.5 Effet du rayon de perception	166						
	10.4	Interprétation des résultats	173						
	10.5	Conclusion	174						
v	C	onclusion générale	175						
·									
Bibliographie									