THESE

Présentée

A l'INSTITUT D'ELECTRONIQUE DE L'UNIVERSITE DE SETIF

Pour Obtenir le titre de MAGISTER en électronique Option : COMMUNICATIONS

Par

Mr Djamel SAIGAA

THEME

SYNTHESE DES FILTRES NUMERIQUES RIF PAR LA METHODE DES FENETRES

Essai en temps réel sur le processeur de signal ADSP-2100

Soutenue le 08/07/1993 Devant le jury composé de :

Messieurs:

A/ Hafid KHELLAF

Président Rapporteur

D. CHIKOUCHE H. CHEMALI L. SELMANI

Examinateur

S. BERRETIL

Examinateur Examinateur

1 INTRODUCTION Chapite I: GENERALITES I.1. L'évolution du traitement numérique du signal 3 I.2. De l'analogique vers le numérique 1.2.1. Les différences essentielles I.2.2. Les organes de mise à l'echelle I.3. Filtrage 5 I.3.1. Historique I.3.2. Organisation d'un filtre numérique 6 Chapitre II: SIGNAUX ET SYSTEMES DISCRETS 8 II.1. Signaux numériques II.1.1. Définitions Я II.1.2. Signaux à temps discret 8 II.1.3. Notation 8 II.1.4. Définition de quelques signaux élémentaires II.1.5. Opérations élémentaires sur des signaux 10 11 II.1.6. Remarque II.1.7. Norme d'un signal discret 11 II.1.8. Représentation fréquentielle d'un signal discret 11 II.1.9. Echantillonnage et reconstitution des signaux 12 analogiques II.1.10. La transformée en Z d'un signal discret 12 II.1.11. Transformmée en Z inverse 13 13 II.2. Systèmes numériques II.2.1. Définition 13 14 II.2.2. Systèmes causals II.2.3. Systèmes linéaires 14 II.2.4. Equation aux différences 14 II.2.5. Réponse impulsionnelle d'un système linéaire 15 II.3. Systèmes linéaires invariants 15 II.3.1. Définition 15 II.3.2. Equation aux différences linéaire à coefficients 15 constants II.3.3. Produit de convolution 16 II.3.4. Systèmes linéaires invariants causals 16 II.3.5. Systèmes linéaires invariants stables 16

II.4. Fonction de transfert d'un système linéaire invariant

16

SOMMAIRE

Chaptere III : ANALISE DES FILIRES NUMERIQUES	
III.1. Définitions	18
III.1.1. Filtre numérique	18
III.1.2. linéarité	16
III.1.3. Invariance temporelle	18
III.1.4. causalité	19
III.2. La relation de recurrence	19
III.3. Fonction de transfert d'un filtre numérique	19
III.3.1. Définition	19
III.3.2. Fonction de transfert et relation de recurrence	15
III.3.3. Pôles et zéros de la fonction de transfert	20
III.3.4. Fonction de transfert et réponse impulsionnelle	20
III.4. Stabilité d'un filtre numérique	20
III.5. Le comportement fréquentielle d'un filtre numérique	21
III.5.1. Fonction de transfert isochrone	21
III.5.2. Propriétés de la fonction de transfert isochrone	22
III.5.2.1. Périodicité	22
III.5.2.2. Symétrie	28
III.5.3. Relations entre fonctions de transfert isochrones	22
III.5.4. Décomposition de la fonction de transfert	
isochrone en série de Fourier	23
III.6. Classification des filtres numériques	24
III.6.1. Filtre numérique RIF	24
III.6.1.1. Définition	24
III.6.1.2. Fonction de transfert	24
III.6.1.3. Approximation des filtres RIF	25
III.6.2. Filtres numériques RII	26
Chapitre IV: FENETRES DE TRONCATURES	
VI.1. Introduction	27
VI.2. Fenêtres classiques	27
VI.2.1. Fenêtre réctangulaire	27
VI.2.2. Fenêtre triangulaire	28
VI.2.3. Fenêtres polynomiales	30
VI.2.4. Les fenêtres Cos ^a (X)	30
VI.2.5. Fenêtre de Hamming	38
VI.2.6. Fenêtre de Blackman	33
VI.3. Fenêtres de Kaiser	35
IV.4. Fenêtres construites	36
IV.4.1. Fenêtre de Riesz	36
IV 4 2 Forstro do Riomana	34

IV.4.3. Fenêtre de la Vallé-Poussin	37
IV.4.4. Fenêtre de Tukey	38
IV.4.5. Fenêtre de Bohman	38
IV.4.6. Fenêtre de Poisson	39
IV.4.7. Fenêtre de Hanning-Poisson	39
Chapitre V : SYNTHESE DES FILTRES NUMERIQUES RIF A PHASE	
LINEAIRE PAR LA METHODE DES FENETRES	
V.1. Filtres FIR à phase linéaire	41
V.2. Calcul des coefficients par développement en série de	
Fourier pour des spécifications en fréquence	48
V.2.1. Filtre passe-bas	42
V.2.2. Filtre passe-haut	43
V.2.3. Filtre passe-bande	43
V.2.4. Filtre coupe-bande	44
V.3. Algorithme de synthèse	45
V.3.1. Calcul de la réponse impulsionnelle	45
V.3.2. Troncature de la réponse impulsionnelle	45
V.2.3. Filtre RIF causal	46
V.4. Synthèse de filtres RIF par la fenêtre de Kaiser	46
V.5. Relation entre nombre de coefficients et gabarit	
de filtre	47
Chapitre VI : STRUCTURES DE REALISATION ET SENSIBILITE	
DES FILTRES RIF A PHASE LINEAIRE	
VI.1. Structures	45
VI.2. Sensibilité des filtres RIF à phase linéaire	50
VI.3. Limitation du nombre de bits des coefficients	51
VI.4. Etude statistique de l'erreur (bruit d'arrondi)	52
VI.5. Nombre de bits nécessaire dans la représentation des	
coefficients d'un filtre spécifié par un gabarit	53
Chapitre VII : RESULTATS DE SYNTHESE ET IMPLEMENTATION	
SUR LE PROCESSEUR DE SIGNAL ADSP-2100	
VII.1. Algorithme de calcul	56
VII.2. Déscription du logiciel	57
VII.3. Resultats	57
VII.4. Implémentation sur le processeur de signal ADSP-2100	. 59
VII.5. Application	61
CONCLUSION	88
Annexes	