TOPOLOGICAL MEASURE THEORY

A Study of Repleteness and Measure Repleteness

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY (Mathematics)

at

POLYTECHNIC UNIVERSITY

by

EL-BACHIR YALLAOUI

January 1989

Approved:

Department Head

5/19_1988_

Copy No.____

AN ABSTRACT

TOPOLOGICAL MEASURE THEORY A Study Of Repleteness And Measure Repleteness

by

El-Bachir Yallaoui Advisor: George Bachman

Submitted in Partial Fulfillment of the Requirements
for the degree of
Doctor of Philosophy (Mathematics)

January 1989

Let £ be a lattice of subsets of the abstract set X, and A(£), the algebra generated by £. We define $M(\pounds)$ to be all non-negative, finitely additive, finite valued measures on $A(\pounds)$; $M_{\sigma}(\pounds)$ the measures of $M(\pounds)$ which are σ -smooth on £ and $M_R(\pounds)$ those measure of $M(\pounds)$ which are £-regular. If $\mu \in M_R(\pounds)$ and $\mu \in M_{\sigma}(\pounds)$, we write $\mu \in M_R^{\sigma}(\pounds)$ to represent the countably additive £-regular measures of $M(\pounds)$. $M_{\tau}(\pounds)$ designates those $\mu \in M(\pounds)$ which are τ -smooth on £. If in any of the above definitions, we restrict the measures to be only zero-one valued, the corresponding set is denoted by an I. Thus $IR(\pounds)$ are the 0-1 valued measures of $M_R(\pounds)$, and $I_R^{\sigma}(\pounds)$ are the 0-1 valued measures of $M_R^{\sigma}(\pounds)$ and so on.

In the first part of this dissertation, we investigate various topological properties associated a lattice £, such as£ normal, regular, etc..., and express these properties in terms of measures from the I's. We also do this for pairs of lattices $\pounds_2 \supset \pounds_1$ thereby extending work of [12], [5], [7] and [2]. These results are the systematically applied to the Wallman Space $I_R(\pounds)$ and lattices the $W(\pounds)$ and $\tau W(\pounds)$. In particular, conditions for $\tau W(\pounds)$ to be normal are thoroughly investigated, a similar investigation is carried out for the space $I_R^{\sigma}(\pounds)$ with the relative Wallman topology.

In addition, in the first part of the dissertation we give conditions in \mathfrak{L} under which $\mu \in M_{\sigma}(\mathfrak{L})$ or $\mu \in M_{\sigma}(\mathfrak{L}')$ (where \mathfrak{L}' is the complement lattice) or $\mu \in M_{\tau}(\mathfrak{L}')$ are in $M_R(\mathfrak{L})$.

In the second part of the dissertation, the remainders $I_R(\pounds)-X$, and $I_R(\pounds)-I_R^{\sigma}(\pounds)$ for a disjunctive lattice \pounds are thoroughly investigated and properties in \pounds such as repleteness, Lindelöff are expressed in terms of these remainders. This work extends that of [3]. Also, special measures of $M_R^{\sigma}(\pounds)$ such as strongly σ -additive and strongly τ -additive are introduced, and characterized in terms of induced measures on $I_R^{\sigma}(\pounds)$. There behavior under repleteness of \pounds is also investigated, and new conditions for the repleteness of \pounds are obtained.

CONTENTS

Chapter 1. Lattice and measure terminology	1
1.1- Lattice terminology	1
1.2- Measure terminology	3
1.3- Separation terminology	5
Chapter 2. Regular lattice measures	7
2.1- Regular measures	7
2.2- σ-smooth measures	8
2.3- τ-smooth measures	16
Chapter 3. Properties of lattices	18
3.1- Topological properties of measures	18
3.2- Topological properties of lattices	21
Chapter 4. Lattice separation and measure extensions	33
4.1- Separation of two lattices	33
4.2- Relations between separated lattices	34
4.3- Extensions and restrictions of regular measures	42
4.4- Extensions of σ-smooth measures	48
Chapter 5. The Wallman space and topology	52
5.1- The Wallman space	52
5.2- Topological properties of W(£)	56
5.3- Relations between £ and W(£)	60
5.4- The space $I_{\mathbf{R}}^{\mathbf{\sigma}}(\mathbf{f})$	63
5.5- Topological properties of $W_{\sigma}(\mathfrak{t})$	67
Chapter 6. Regular lattice measures repleteness and measure repleteness	71
6.1- Characterization of σ -smooth, τ -smooth and thight measures	71
6.2- Repleteness and the remainder	87
Chapter 7. Special measures and repleteness	101
Bibliography	113