Eduard Babkin
Boris Ulitin

Ontology-Based
Evolution of
Domain-Oriented
Languages

Models, Methods and Tools for
User Interface Design in
General-Purpose Software Systems

@ Springer

Ontology-Based
Evolution of
Domain-Oriented
Languages

Eduard Babkin ¢ Boris Ulitin

Ontology-Based
Evolution of
Domain-Oriented
Languages

Models, Methods and Tools for
User Interface Design in
General-Purpose Software Systems

@ Springer

Eduard Babkin Boris Ulitin

HSE University HSE University
Nizhny Novgorod, Russia Nizhny Novgorod, Russia
ISBN 978-3-031-42201-0 ISBN 978-3-031-42202-7 (eBook)

https://doi.org/10.1007/978-3-031-42202-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-2597-9043
https://orcid.org/0000-0003-3774-2457
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7
https://doi.org/10.1007/978-3-031-42202-7

Preface

This work focuses on the notion of domain-specific languages (DSLs) in the context
of modelling the structure of interfaces of general-purpose software systems. In
this case, the structure refers to the set of objects involved in an interface and the
relationships between them. Algorithmic DSLs used to describe the solution of some
problem within a domain are not the focus of this book. It is important to note
that the DSL approaches used in this work are applicable to the modelling of both
software interfaces between the various components of a complex software system
and human-machine interfaces (i.e., objects and links displayed on the screen and
used by the user). Within the scope of this study, we demonstrate the application and
development of these approaches only to improve the efficiency of human-machine
interface design as part of general-purpose software systems.

Domain-oriented programming has one main principle. And the principle says
that you should always focus on a single mission, for which a specific, specialized
programming language has been developed, which is used just to solve this set
mission better than all known methods. DSLs are used in a narrow domain, taking
into account all its specific points. Their main task is to solve all the problems of the
application for which they were created. Therefore, domain-oriented programming
is a rather specific area of development. It is tied around some specific activity
and with some unique language. In fact, there are a lot of such “microspheres”
where a separate DSL is used. In general, domain-specific programming touches
areas where general-purpose languages cannot “reach” or where their use is simply
inappropriate. Very often, a DSL is used as an addition to the main programming
languages, expanding their capabilities and sphere of influence.

It is difficult to define the advantages and disadvantages of a DSL, if only
because it functions in very specific domains where it simply would not work
out “in a different way.” This is the same as evaluating the merits of surgery or
dentistry as a field of medicine. On the other hand, like any language, DSLs have
similar components in their structure (its semantics and syntax). In addition, based
on the domain, the DSL must conform to the domain model. Consequently, we
can “dissect” the DSL at the level of objects and relationships by establishing a
correspondence between the DSM and the DSL.

vi Preface

This correspondence opens up great opportunities for using various model-based
approaches to the development of DSLs. It is these ideas that form the basis of our
study and the proposed projection approach to the development of DSLs. The main
goal of this study is to demonstrate the possibilities of the projection approach and
its flexibility in the context of the DSL evolution. In our case, we use the ontological
representation as the initial domain model. This is reasonable both from the point
of view of the model-oriented approach (the ontology is a formal artifact and can
be used in cross-model transformations) and from the point of view of universality
(there are a large number of ontologies with varying degrees of domain detail). In
addition, ontologies contain not only a set of objects and relationships between them
but also domain constraints, which are essential and must be taken into account in
the case of developing domain-specific languages.

Our results are presented in the following form. The introduction (Chap. 1)
presents the relevance of the work, the aim and objectives of the research, the
scientific novelty, and the theoretical and practical significance of the research, as
well as a summary of the contents of the work.

Chapter 2 analyzes the existing classical DSL design and implementation
methodology for modelling general-purpose human-machine interfaces in the con-
text of the life cycle of general-purpose software systems. For this purpose, the
chapter provides the definition of a DSL and its place in general-purpose software
systems. A description of the main stages of the classical life cycle of DSLs
and software systems is presented. The shortcomings of existing DSL lifecycle
management methods for modelling human-machine interfaces of general-purpose
software systems are highlighted.

Based on this analysis, it is concluded that the life cycles of DSLs and general-
purpose software systems are not fully consistent. As a consequence, there is a need
to develop methods that not only address the shortcomings of the classical approach
to software development for modelling general-purpose human-machine interface
software systems but also support its evolution in line with the evolution of the
subject domain.

Chapter 3 is devoted to an analysis of existing methods and formalisms used in
describing the structure of a DSL for modelling general-purpose human-machine
interfaces of software systems. In particular, formalizations of artifacts, such as
domain semantic model (DSM) and the components of DSL structure, semantics,
abstract, and concrete syntax, are considered.

Based on the analysis of classical approaches to the formalization of a DSL for
the modeling of general-purpose human-machine interfaces of software systems,
a generalized unified model-oriented representation of a DSL for the modeling of
general-purpose human-machine interfaces of software systems is formulated. This
representation makes it possible to represent each component of the DSL structure
as a model and the DSL evolution process as a set of cross-model transformations.

Formation of such a unified representation makes it possible to directly use the
results of subject domain analysis (its representation in the form of a DSM) in
the process of DSL development for general-purpose software systems’ human-
machine interface modeling, thereby automating the processes of DSL structure

Preface vii

determination, thus eliminating the need for DSL re-creation in case of DSM
modification in the process of subject domain evolution.

Chapter 4 provides a detailed description of the proposed new projection-based
approach to the development of DSLs for modelling human-machine interfaces
of general-purpose software systems, based on the model-based representation of
the DSL structure formulated in the previous chapter. In the proposed projection
approach, the transition between the different components of the DSL structure
takes place by applying a set of cross-model transformation rules that ensure not
only that changes made in the DSL are consistent with changes in the subject domain
(DSM) but also that the DSL evolution process can be automated.

The resulting set of cross-model transformation rules for organizing DSL
evolution based on graph transformations can be applied to DSL design for
modelling general-purpose DSLs of software systems in various subject areas. For
this purpose, only parts of the rules need to be adapted according to the used subject
domain models, while the structure of the rules and their set remain unchanged.

Based on this set of cross-model transformation rules, the chapter presents
details of the algorithmization and software implementation of the human-machine
interface evolution procedure for general-purpose software systems. The software
algorithms developed have been used to implement software systems in the two
subject areas described in the next chapter.

Chapter 5 describes and analyzes the software implementation of the human-
machine interface evolution of general-purpose software systems as an example of
an external DSL in two subject domains: “Software System for University Admis-
sions Office” and “Software System for Resource Allocation of Railway Station.”
The definition of cross-model transformation rules in ATL language is presented
[7] to implement the horizontal and vertical evolution of a DSL for modelling
human-machine interfaces of general-purpose software systems. Tools (modules)
are developed to support DSL evolution for simulation of general-purpose human-
machine interfaces of software systems. The results of the evaluation of the
characteristics of existing and proposed software environments are given according
to the following criteria: time to modify the DSL and number of lines of code
manually inserted during the DSL modification.

Chapter 6 is devoted to the analysis of the subsequent application of the
proposed projection approach for more complex systems, namely, decision support
systems based on heterogeneous information of decision-makers. In this case, we
demonstrate the possibilities of the approach for implementing evolution both at the
level of the DSL and the original DSM (a set of criteria and their limitations, adapted
to each expert participating in the assessment).

The conclusion (Chap. 7) of the work contains a list of the main results of the
research, an assessment of the level of achievement of the objective, as well as
suggestions for the further development and practical application of the findings in
various subject domains.

Nizhny Novgorod, Russia Eduard Babkin
June 2023 Boris Ulitin

Acknowledgments

I would like to express my sincere gratitude to Tatiana, whose continuous support
and benevolent patience became a solid foundation of my scientific endeavors.

Nizhny Novgorod, Russia Eduard Babkin

Foremost, I would like to express my sincere gratitude to my advisor Prof. Eduard
Babkin for the continuous support of my PhD study and research, for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me all the
time in the research and writing of this thesis. I could not have imagined having a
better advisor and mentor for my PhD study.

Besides my advisor, I would like to thank my thesis committee, Prof. Sergey
Zykov, Prof. Abdulrab S. Habib, Prof. Robert Pergl, Dr. Sergey Shershakov, and
Dr. Rostislav Yavorskiy, for their encouragement, insightful comments, and hard
questions.

Last but not the least, I would like to thank my family for giving birth to me in
the first place and supporting me throughout my life.

Nizhny Novgorod, Russia Boris Ulitin

The research is supported by grant of the RSF (project Ne 23-21-00112 “Models
and methods to support sustainable development of socio-technical systems in
digital transformation under crisis conditions”).

ix

Contents

1 Research Backgroundcooiiiiiiiiiiiiiiiiiiiiiie

PartI The Place of a Domain-Specific Language in Modern

Information Systems

2 Analysis of Approaches to the Development of a DSL for
Software SyStems.............ooiiiiiii i

2.1 Definition, Classification, and General Structure of the DSL
2.2 DSL Lifecycle Modelsccoiiiiiiiiiiiiiiiiiiii i

2.2.1 Analysis of the Applicability of the DSL

2.2.2 Domain ANalySisuuuuenieeeea

2.2.3 Design and Implementationof the DSL......................

2.2.4 Deploymentofthe DSL ...

2.2.5 Shortcomings of Existing DSL Lifecycle

Management Methods to Support DSL Evolution............

2.3 Features of the Development and Operation of Software

Systems in Dynamic CONtextseeeeiiiiiiiiieeniinnnn...
2.4 Analysis of the Classical Approach to the Development of a DSL .

3 Analysis of Existing Approaches to the Formalization of the

DSL Structureooii i e
3.1 Approaches to the Development and Analysis

of the Domain Semantic Model.....................ooiiiii
3.2 Definition and Classification of Ontologies
3.3 Languages and Visualization Tools for Ontologies as DSM.........
3.4 The Concept of Model-to-Model (M2M) Transformations..........
3.5 Defining Model Transformations Through Graphs and Invariants ..
3.6 Model-Based Methods for Defining DSLs

3.6.1 Three-Tiered Structure of the DSL
3.6.2 Semantic DSLModelcooiiiiiiiiiiii..
3.6.3 Methods for Developing a DSL Metamodel
3.6.4 Methods for Modeling a Specific DSL Syntax...............

[N RN |

11
12

12

14
16

21

xi

xii

3.7 Formalization of Cross-Model Transformations Based

on Graph Modelsccooiiiiii i

3.8 Defining Rule-Based Model Transformations with Triple

Graph Grammarsooviuiieeeeeiiiiiiiiiiiieeeenn.
3.9 Definition of GTS Using Invariants..............ooooeeeeiiiinn.
3.10 Behavior Preservation for Model Transformations

PartII A Projection Approach to DSL Development

4 Developing a Projection Approach to DSL Development............

4.1 Outline of the Proposed Projection Approach Based
on a Generalized Model-Oriented DSL Structure and

Cross-Model Transformationscovvuviiiiiiniinnnnnn..

4.2 Representation of the DSL Evolution Under the Proposed

APProach ...

4.3 Algorithmization of DSL Evolution Procedures Using

Cross-Model Transformationscovvuiiiiiiiniinnennn..

5 Practical Use of the Proposed Projection Approach for

Developing and Modifying a DSL in Changing Contexts
5.1 Arguments for the Choice of Domains to Verify the Results

5.2 Development of a Software System Based on the
Projection Approach for Railway Station Resource

ManaZEMENL

5.2.1 Applying the Projection Approach: Developing a

Model of the Domain.............ccooviiiiiiiiiininiinn,

5.2.2 Applying the Projection Approach: Describing

MCUsin DSLModelscoooviiiiiiiiiiiiiiinnn,

5.2.3 Applying the Projection Approach: Describing
Cross-Model Transformations Between DSM and

DSL MetamodelS.......oooviiiiiiiiiii i

5.2.4 Applying the Projection Approach: Describing the

MCC in the Architecture of the Proposed System

5.2.5 Applying the Projection Approach: Designing the

Architecture of the Proposed Software System

5.2.6 Design and Implementation of the DSL Evolution

Module ..o

5.2.7 Analysis of the Effectiveness of the Proposed Solution
5.3 Development of a Software System Based on the

Projection Approach for the University Admissions Office

5.3.1 Applying the Projection Approach: Developing a

Model of the Domain..............ocooviiiiiiiiiininiinn,

5.3.2 Applying the Projection Approach: Describing

MCUsin DSLModelscoooviiiiiiiiiiiiiiinnn,

Contents

Contents xiii

5.3.3 Applying the Projection Approach: Describing
Cross-Model Transformations Between DSM and

DSL Metamodelscooiiiiiiiiiiiiiiiii i 92
5.3.4 Applying the Projection Approach: Describing the
MCC in the Architecture of the Proposed System 92
5.3.5 Applying the Projection Approach: Designing the
Architecture of the Proposed Software System 94
5.3.6 Design and Implementation of the DSL Evolution
Moduleooiii 99
5.3.7 Analysis of the Effectiveness of the Proposed Solution 103
5.4 Technical Features of the Implemented Software Prototypes 107
5.5 Analysis of the Applicability of the Proposed Approaches
and Implemented Software Prototypesccceeviiiiiee... 107
6 Discussion and Further Developmentccoon 111
6.1 Crisisology-Based Trade-Off Optimization in
Sociotechnical SYSteMS........uveetiiii i 111
6.2 Crisisology as a Conceptual Framework for Multi-criteria
Decision Support in Information Systems Design 112
6.3 A Proposed Method for Hierarchical Multi-criteria Choice.......... 113
6.4 A Proposed Hierarchical Structure of the Criteria for
Selection of IT System Architecture.............oooeeviiiiiiino... 116
6.5 Description of the Decision Support Service...........c.oovvevveee... 118
6.6 Case Study of the Proposed Prototype............cooceeviiiiie... 121
7 Conclusion and Final Remarks.....................ooo 125
A Example of an MCC Handler for an int Field MCU..................... 129
B Object-Relational Model MCU Correspondence Function
and DSLMCC ... 131
C Cross-Model Transformationsin ATL...........................o.. 133
D Textual DSL for Railway Station Resource Allocation 135
GIOSSATY ... e 137

ReferenCesS. 139

