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Preface

Quantum Theory is more than one hundred years old, but its mathematical foun-
dations have been gradually clarified only in the last half-century. We will tell
the story in this book. The whole contents of quantum theory will be unified un-
der the name of theory of stochastic processes. As a matter of fact, in our view,
Quantum Theory is an application of the theory of Markov (stochastic) processes
to the analysis of the motion of small particles in physics (such as electrons and
photons).

It is correctly considered that quantum theory is radically different from the
classical theory (i.e., Newton’s mechanics). In fact, quantum theory is obtained by
means of the quantization of the classical theory. Quantization means that we re-
place classical physical quantities with operators and subject them to the so-called
commutation relations. This procedure itself is the core of the Born-Heisenberg
quantum mechanics and is responsible for the successes of quantum theory. But
why we must proceed in this way was never clearly explained. It has been accepted
that success itself justifies the method. However, this incomprehensible so-called
quantization is a technical matter, and quantum theory should be understood in
the context of the theory of stochastic processes, as will argue in the sequel.

In this book we adopt the theory of Markov processes as a mathematical
foundation of quantum theory instead of quantization.

In the conventional quantum theory, it has been implicitly assumed that the
paths of the motion of a particle are smooth, like in the classical Newtonian me-
chanics. In this book we assume that, on the contrary, the paths of the motion of a
small particle are not smooth; rather, the particle performs a random zigzag mo-
tion. We will explain and prove that the theory of random motion of small particles
covers all of what has been called quantum theory. In the conventional quantum
theory the notion of random motion of small particles is somehow neglected and
has never been considered seriously. We will attempt to make as clear as possible
the fact that quantum theory is precisely the theory of random motion. To de-
velop the new quantum theory, we will extend slightly the conventional theory of
Markov processes, and we will do it step by step in each chapter, as required.

v



vi Preface

To make things clearer, let us quickly look back at the historical development
of quantum theory . Here we call the whole discussion on the motion of electrons
and photons (or other small particles) quantum theory. The origin of this theory
is Planck’s quantum hypothesis, formulated in 1900. In deriving his heat radiation
formula, Planck postulated that light energy can only be emitted and absorbed in
discrete bundles, called quanta. However, what this actually means was not clear
until Einstein’s particle theory of light appeared (Einstein (1905, a)). Particles of
light are then called photons. The physical objects that quantum theory treats are
small particles such as electrons and photons.

If so, we must then determine how such small particles move under the ac-
tion of external forces. In the conventional quantum theory, discussions on the
trajectories of small (quantum) particles have been neglected. In fact, if you look
for discussions on the trajectories of small (quantum) particles in the available
quantum theory books, you will certainly be disappointed, because you will find
nothing. You will find there mainly methods for computing energy values. In fact,
the existing so-called theory of quantum mechanics offers no possibility of com-
puting trajectories of the motion of electrons (small particles). One might argue
that the Schrödinger equation tells us about the motion of electrons under exter-
nal forces (potentials). But how? As a matter of fact, the Schrödinger equation is
an equation for an “amplitude of probability” and does not give information on
trajectories of electrons. For this we must resort to our imagination. This is the
only way one proceeds to understand the so-called quantum mechanics.

In this book, we will develop a theory that enables us to compute and describe
the motion, namely, trajectories of electrons (of small particles), and not only to
compute energy. In fact, small particles such as electrons perform a Brownian
motion, which is an unavoidable, intrinsic motion of small particles, because it is
caused by vacuum noise. Hence, the paths of small particles are not differentiable
everywhere. We will accept this fact and call it random hypothesis.

As a consequence, Newton’s classical equation of motion is not applicable to
the random motion, and we need a new equation of motion which can be applied
to particles performing random motions.

We call the theory of random motion of particles that is based on these new
equations of motion mechanics of random motion, i.e., a new quantum theory. It is
an elaboration of quantum theory in terms of the theory of Markov processes. This
is the main theme of the present book. However, to formulate the new equations
of motion we must extend the conventional theory of Markov processes.

If one applies the mechanics of random motion to the physical phenomena
that have been called mysteries of quantum mechanics, the mystery is removed.
This kind of quantum mechanical phenomena will be explained clearly in the the-
ory of random motion. Moreover, problems that could not be handled in quantum
mechanics will be brought under the clear and bright light of the theory of random
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motion and solved unequivocally, because we can now compute accurate trajec-
tories (paths) of the motion of electrons and see how electrons move under the
influence of external forces.

Now, if one looks at the history of quantum theory and the history of the
theory of stochastic processes, one finds that they both started at the begin-
ning of the twentieth century, and developed in parallel independently, except
for Schrödinger’s analysis in 1931. Nevertheless, the two theories were intimately
related, although most of people did not recognize this clearly.

In quantum theory, the Schrödinger equation was discovered in 1926. Schrö-
dinger investigated the Brownian motion which is symmetric with respect to
time reversal (Schrödinger (1931)) in order to deepen his understanding of the
Schrödinger equation. On the other hand, in the theory of stochastic processes,
Kolmogorov laid the foundations of probability theory and discovered the equation
of diffusion processes that today bears his name (Kolmogoroff (1931, 1933)). The
two equations are remarkably similarity.

In fact, although this is not well known, Kolmogorov’s elaboration of proba-
bility theory and Kolmogorov’s equation of diffusion processes were strongly influ-
enced by Schrödinger’s investigation of the Brownian motion and the Schrödinger
equation. Moreover, motivated by Schrödinger’s investigation of time reversal of
Brownian motion (Schrödinger (1931, 1932)), Kolmogorov discussed the time re-
versal and the duality of the diffusion processes with respect to the invariant
measure (Kolmogoroff (1936, 1937)).

There is another remarkable similarity. The Schrödinger equation contains
the first-order time derivative multiplied by the imaginary unit i. On the other
hand, Kolmogorov’s equation also contains the first-order time derivative, but
without the imaginary unit i. Hence, the Schrödinger equation is an equation for
complex-valued functions, whereas the Kolmogorov equation is one for real-valued
functions. Nevertheless, the two equations describe the same physical phenomena,
namely, the random motion of small particles under external forces, although this
is not self-evident. In fact, Schrödinger recognized this fact and tried to clarify it
in his work (Schrödinger 1931), but that attempt was not so successful. This is a
difficult problem. We will analyze Schrödinger’s problem and solve it in this book.

In short, we will clarify the intimate relationship between Schrödinger’s work
and that of Kolmogorov, and unify the two theories into a single theory. This
unified theory is

the new quantum theory i.e., mechanics of random motion.

In other words, we will argue that quantum theory is nothing but mechanics of
random motion under the influence of external forces.

Now, as we have explained, in the theory of random motion the random
hypothesis is an indispensable basic notion. In the quantum mechanics of Born and
Heisenberg, however, this recognition of the importance of the random hypothesis
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is missing. This will be explain further in Chapter 3. (Cf. also Luis de la Peña et
al. (2015).)

We will first present in Chapter 1 some aspects of the theory of stochastic
processes, in particular, Kolmogorov’s equation, and Itô’s stochastic differential
equations and Itô’s formula. This part is, in a sense, a fast introduction to the
theory of Markov processes. Then, we will introduce the equation of motion for
stochastic processes, which is a new notion, and provide mathematical tools to
handle it.

We will then discuss the superposition of complex evolution functions of
stochastic processes. Superposition induces the so-called entangled random mo-
tion. As an application of superposition (the entangled motion), we solve the
problem of the double slit experiment, which was one of unsettled problems of
quantum mechanics. In quantum mechanics people speak of interference to ex-
plain the double-slits problem (cf., e.g., Merli P. G., Missiroli G. F., and Pozzi G.
(1976), Rosa (2012)). However, it is clear that interference is not possible if we
consider an experiment in which we send electrons one by one, with a sufficiently
long time separation.

There is one more point deserving attention. As is well known, in the conven-
tional theory of diffusion processes one specifies an initial value for an evolution
equation. In our theory of mechanics of random motion, instead, we specify both
an initial value and a terminal value for an evolution function. We will see that
this is one of the most important facts and advantages of our theory.

Chapter 2 is devoted to applications of the theory. We will show that we can
follow exact trajectories of electrons moving even in inside atoms. In particular,
we will see that Bohr’s transition between energy levels is not a jump, but a
continuous change of motion described by the Schrödinger equation.

In Chapter 3, we argue that Heisenberg’s uncertainty principle is erroneous,
and that Einstein’s locality holds, contrary to Bell’s claim. An example satisfying
the locality property is given.

In Chapter 4 we provide the Feynman-Kac and Maruyama-Girsanov formu-
las, and also explain the time reversal in stochastic processes and its applications.

Chapter 5 introduces the concept of the relative entropy of stochastic pro-
cesses, and discusses the so-called ”propagation of chaos” of Kac as an application
in this context.

The creation and annihilation of random particles will be discussed in the
framework of the theory of Markov processes in Chapter 6.

The contents of this volume overlaps to some extent with the contents of
two other monographs Nagasawa (1993 and 2000). In Nagasawa (1993) emphasis
is placed on clarifying the relationships between the Schrödinger equation and
diffusion processes. Nagasawa (2000), on the other hand, provides an exposition
of the theory of Markov processes and also of time reversal in Markov processes,
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which plays an essential role in quantum theory of random motion. In fact, the
system of equations of motion of quantum particles consists of a pair of equations,
one in which time runs forward, and a second one in which time runs backward,
so time reversal plays a key role. In the present volume the entire material is
systematically presented as a theory of Markov processes in quantum theory.
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