James Sneyd · Rachel M. Fewster Duncan McGillivray

Mathematics and Statistics for Science

Mathematics and Statistics for Science

James Sneyd • Rachel M. Fewster Duncan McGillivray

Mathematics and Statistics for Science

James Sneyd Department of Mathematics University of Auckland Auckland, New Zealand

Duncan McGillivray School of Chemical Sciences University of Auckland Auckland, New Zealand Rachel M. Fewster Department of Statistics University of Auckland Auckland, New Zealand

ISBN 978-3-031-05317-7 ISBN 978-3-031-05318-4 (eBook) https://doi.org/10.1007/978-3-031-05318-4

Mathematics Subject Classification (2020): 00-01, 00A06, 62-01

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book is aimed at university students in the sciences who are not planning on continuing with a degree in mathematics, statistics, physics, or computer science, but who nevertheless need to learn some more mathematics and statistics for their science degrees. So, for example, if you're studying a discipline such as chemistry, molecular biology, biochemistry, physiology, geography, psychology, geology, or ecology, you will find this book useful for learning the mathematics and statistics you will need in your scientific career.

And you will need to know some mathematics and statistics, nothing more certain. You won't need to know a lot of theory – no theorems or proofs or corollaries or lemmas or things like that will be required – and you might not need to know a lot of advanced techniques, but nowadays science has become so quantitative that mathematics and statistics simply cannot be avoided.

Although this is certainly true, mathematics and statistics are not always taught in a way that is appropriate for students who want to learn useful techniques, but don't need to know any theory. Therefore, in this book we have taken what we think is a very different approach. Firstly, we have covered only those topics that we believe to be directly useful to a practising scientist. If it's something that we have never used ourselves in practice, then we simply leave it out. For example, the theory of Gaussian elimination is something we learned in detail ourselves, but have never used in practice. Ever. Not one of us has solved a large linear system in any way other than using a piece of software. Sure, the software uses Gaussian elimination. If you write the software you'll need to know how to do that. But if you just want to use the software, knowledge of the underlying theory is a step too far. Similarly, who now draws two-dimensional surfaces by hand? We don't. In fact, we probably can't, not any more; it's been too long since we learned how to do it, but never did it again. But then, why would we want to, when a computer can do that job so much more efficiently?

Secondly, each topic is approached in a way that focuses on how that topic is applied, how it can be used in practice. We don't prove theorems, or give results and propositions; we give no lemmas. Many times we simply state a result, without proving that it's actually correct. But that again is how scientists operate. They don't need to know the detailed theoretical background of why it works. They just need to know that it *does* work, and how to use it.

Of course, there are dangers in an approach like this. It's not uncommon for scientists to study complex and difficult problems, for which basic mathematical and statistical techniques are insufficient. Sometimes, application of the basic methods can lead to errors and problems; often, an understanding of why the basic result is true is needed. However, these cases are the exception rather than the rule. When scientists meet problems of this nature they can learn the theory then, should they wish to do so. To present the theory too soon serves only to hinder rather than to help.

There is, unfortunately, a lot that a book of this type simply cannot cover. After all, we don't want to end up with a book so large that it could not possibly be carried around. So we assume that you're already familiar with the basic operations of arithmetic, algebra and trigonometry. We assume that you can add fractions, take square roots and cube roots, factor polynomials, sketch straight lines and parabolas, and so on.

If you have no idea of how to do these things, then we suggest a more foundational mathematics/statistics book would be a lot better for you. If you've already learned how to do these things, but aren't too confident about them – maybe you learned them at school a long time ago and you've forgotten – then, fortunately, there are many places on the internet that can help you.

One of our favourite places to brush up on mathematical and statistical stuff that you may have forgotten is the Khan Academy. This site covers a huge amount of foundation material. It has problems, solutions and instructional videos. It explains things clearly. We recommend it highly.

Another excellent site is mathsisfun.com. It's not as comprehensive as the Khan Academy site, but contains some lovely animated demonstrations that are definitely worth watching.

Not only does this book omit a lot of foundational material, it also omits some more advanced topics of great scientific importance. In particular, although we consider differential equations in Chapters 25 and 26, the presentation there is only brief and doesn't cover such important things as higher-order ordinary differential equations, systems of differential equations, or partial differential equations. Similarly, we omit practically all the theory of linear systems and matrices. These are all fundamentally important for all branches of science, but there simply isn't space to discuss everything in a single book. If you want to learn more about more advanced topics like this, we suggest one of the many books on Engineering Mathematics, such as the book by Kreyszig or the book by Greenberg. There are many other possibilities, all quite similar. How could this book be used? Well, we authors have used it to teach a course called "Mathematics for Science" at the University of Auckland, New Zealand. This course is designed for science majors (particularly chemistry and biology majors) who don't need to do more advanced mathematics courses. We have also used the statistics parts of this text to teach a statistics course in Auckland with the similar goal of teaching science majors rather than statistics or mathematics majors. This book could also be used as a supplementary text for providing more scientific context and explanation that is typically present in an undergraduate mathematics textbook. However, it would not be all that suitable as a stand-alone text to teach a course for continuing mathematics students, as the necessary theoretical development is mostly absent.

We authors are a bit of a mixed bag. One of us (James Sneyd) is an applied mathematician who specialises in the application of mathematics to cell physiology; one of us (Rachel Fewster) is a statistician who specialises in statistical ecology; one of us (Duncan McGillivray) is a chemist who specialises in the study of biological membranes using tools like neutron and X-ray scattering. However, despite our different backgrounds and research interests, there is one thing we all have in common. Each of us has used mathematics and statistics on a daily basis to solve scientific problems. We know what kind of methods are used. We know the kinds of things that scientists need to know. And we hope that we have managed to convey some of that knowledge to you, in such a way that this book will remain relevant throughout your scientific career.

Auckland, February 2022 James Sneyd Rachel Fewster Duncan McGillivray

Acknowledgements

In writing this book we have had a lot of help from a lot of people. John Mitry, Julia Novak and Andrew Wang all contributed greatly, particularly to the exercises, while David Williams, Cather Simpson and Sheila Woodgate all had a significant effect on the overall direction and content. Joel Schiff and Brian Cox also made significant contributions with their comments and suggestions, as did Joe Mahaffy, who provided an extensive set of comments on an earlier draft.

In particular, we thank Remi Lodh, from Springer, for his help in determining the content and layout, and, more importantly, for his enormous patience.

Early versions of this book were based (very loosely) on the Maths 108, Stats 210 and Stats 20x lecture notes (at the University of Auckland).

Contents

	Unit	is and Measurement	1
1	Units	3	3
	1.1	Numbers	3
	1.2	Decimals	5
	1.3	Orders of magnitude and scientific notation	5
	1.4	Numbers and units	7
	1.5	Units in equations	9
	1.6	Unit conversion	12
	1.7	Parts per million, parts per billion	15
2	Meas	surement, rounding and uncertainty	23
	2.1	Precision and accuracy	24
	2.2	Significant figures and rounding	24
	2.3	Measurement uncertainty	27
	2.4	Significant figures in equations	28
	2.5	Uncertainty analysis	29
П	Fur	actions and Complex Numbers	39
3	Func	tions	41
_			_
	3.1	What is a function?	41
•	3.1 3.2	What is a function?	41 42
	3.1 3.2 3.3	What is a function?Domain of a functionGraphing functions	41 42 46
	3.1 3.2 3.3 3.4	What is a function?	41 42 46 46
	3.1 3.2 3.3 3.4 3.5	What is a function?.Domain of a function.Graphing functions.Functions represented by a table.Functions and units.	41 42 46 46 47
	3.1 3.2 3.3 3.4 3.5 3.6	What is a function?Domain of a functionGraphing functionsFunctions represented by a tableFunctions and unitsProportionality	41 42 46 46 47 50
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	What is a function?	41 42 46 46 47 50 53
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	What is a function?Domain of a functionGraphing functionsFunctions represented by a tableFunctions and unitsProportionalityPiecewise-defined functionsOperations on functions	41 42 46 46 47 50 53 56
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	What is a function?Domain of a functionGraphing functionsFunctions represented by a tableFunctions and unitsProportionalityPiecewise-defined functionsOperations on functionsFunction composition	41 42 46 46 47 50 53 56 56
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expc	What is a function?	41 42 46 46 47 50 53 56 56 56 67
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expc 4.1	What is a function?	41 42 46 46 47 50 53 56 56 56 67
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expc 4.1 4.2	What is a function?	41 42 46 46 47 50 53 56 56 56 67 73
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expc 4.1 4.2 Perio	What is a function?	41 42 46 47 50 53 56 56 56 67 73 89
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expc 4.1 4.2 Peric 5.1	What is a function?	41 42 46 46 47 50 53 56 56 56 67 73 89 91
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Expo 4.1 4.2 Peric 5.1 5.2	What is a function?	41 42 46 46 46 47 50 53 56 56 67 73 89 91 95

	5.4	Calculating period and frequency	97
	5.5	Solving simple trigonometric equations	100
	5.6	Polar coordinates	102
	5.7	Periodic functions as models of the real world	104
6	Linea	arising functions	121
	6.1	Revision: the equation of a line	122
	6.2	Lineweaver–Burke plots	124
	6.3	Linearising the Arrhenius equation	125
	6.4	Power laws	127
7	Com	plex numbers	135
	7.1	The number <i>i</i> and other complex numbers	136
	7.2	Adding and subtracting complex numbers	137
	7.3	Multiplying complex numbers	137
	7.4	Dividing complex numbers; the conjugate	138
	7.5	The complex plane	140
	7.6	Complex roots of polynomials	145
	7.7	Euler's formula	148
		Matrix and the Octoor	
	ve	ctors, matrices and Linear Systems	157
8	Vecto	ors	159
	8.1	Adding and subtracting vectors	161
	8.2	Scalar multiplication	162
	8.3	Parallel vectors	163
	8.4	Length of a vector	163
	8.5	Distance between two vectors	166
	8.6	Unit vectors	166
	8.7	The angle between two vectors	168
9	Matri	ices	181
	9.1	Some basic matrix properties	182
	9.2	Row and column vectors	185
	9.3	Matrix multiplication	186
	9.4	A matrix as a linear transformation	192
	9.5	The inverse of a matrix	195
10	Syste	ems of linear equations	203
	10.1	Linear equations	205
			040
	10.2	Solutions in two dimensions	210
	10.2 10.3	Solutions in two dimensions	210 211
11	10.2 10.3 Solvi	Solutions in two dimensions	210 211 219
11	10.2 10.3 Solvi 11.1	Solutions in two dimensions	210 211 219 220
11	10.2 10.3 Solvi 11.1 11.2	Solutions in two dimensions	210 211 219 220 225
11	10.2 10.3 Solvi 11.1 11.2 11.3	Solutions in two dimensions	210 211 219 220 225 229

IV	Differentiation:	Functions	of One	Variable	251
----	-------------------------	------------------	--------	----------	-----

12 Limit	s	253
12.1	The simple cases	. 254
12.2	Limits of ratios of functions	. 258
12.3	Horizontal asymptotes	. 260
12.4	Vertical asymptotes	. 266
13 Diffe	rentiation as a limit	279
13.1	Motivating the definition	. 280
13.2	Distance and velocity	. 283
13.3	Rate of a chemical reaction	. 286
14 Diffe	rentiation in practice	291
14.1	Differentiating polynomials	. 292
14.2	Differentiating trig functions	. 295
14.3	Differentiating exponential and log functions	. 296
14.4	Higher derivatives	. 297
14.5	Product rule	. 298
14.6	Quotient rule	. 300
14.7	Chain rule	. 301
14.8	Using a computer	. 305
14.9	Positions and velocities	. 306
15 Num	erical differentiation	315
15.1	Calculating approximate derivatives	. 316
15.2	Data with increased resolution	. 318
15.3	Problems with high resolution	. 319
ia Impli	cit differentiation	325
16.1	Using the chain rule	. 326
16.2	Relative rates of change	. 329
17 Maxi	ma and minima	337
17.1	Local maxima and local minima	. 339
17.2	Critical points and stationary points	. 340
17.3	Concavity and points of inflection	. 341
17.4	Second derivative test	. 344
V Diff	erentiation: Functions of Multiple	
Variab	es	355
18 Func	tions of multiple variables	357
18.1	Graphing functions of two variables	. 359
18.2	Level curves	. 363

9	Partia	al derivatives									371
	19.1	Slopes of a surface									372
	19.2	Partial differentiation									373

xii

	 19.3 The chain rule for multiple variables	•	377 380 382
20	Extrema of functions of two (or more) variables 20.1 Maximum and minimum points	•	391 392 395
VI	Integration	•	401
21	The area under a curve		403
	21.1 Geometric intuition		405
	21.2 Notation: the integral sign		406
	21.3 Riemann sums		406
	21.4 The Fundamental Theorems of Calculus	•	409
22	Calculating antiderivatives and areas		413
	22.1 Antiderivatives are not unique		415
	22.2 Indefinite integrals		415
	22.3 Basic formulas		415
	22.4 Calculating areas underneath graphs		419
	22.5 Integrating vectors		422
	22.6 Velocity and distance		423
	22.7 The average value of a function		426
	22.8 Work	•	430
23	Integration techniques		439
	23.1 Integration by substitution		441
	23.2 Integration by parts		444
	23.3 The LATE rule		445
	23.4 Looking it up or using a computer	•	447
24	Numerical integration		453
	24.1 Some pretend data		454
	24.2 The trapezoid method		456
	24.3 The special case of equal intervals	•	458
VI	Differential Equations	•	467
25	First-order ordinary differential equations		469
	25.1 Differential equations from the real world \ldots .		471
	25.2 Initial conditions		474
	25.3 Separation of variables		475
	25.4 Using a computer		484
	25.5 Qualitative analysis		486

26	Num	erical solutions of di	fferent	tial e	quatior	าร			505
	26.1	Euler's method .						 	507

Contents

26.2	Using computer packages														511	Ĺ
20.2	Computer publicageo	• •	• •	•	•	•	•	•	•	•	•	•	•	•	011	١.

VIII Probability

E	0	9
J	2	J

27	Probability foundations	525
	27.1 Sample space	527
	27.2 Events	528
	27.3 Probability	530
	27.4 Probability distributions in pictures	534
	27.5 Tables of counts	535
28	Random variables	543
	28.1 Standard notation for random variables	545
	28.2 Discrete and continuous	548
	28.3 The probability function	549
	28.4 Cumulative distribution function	550
29	Binomial distribution	561
	29.1 Bernoulli trials	563
	29.2 Binomial distribution	568
	29.3 Shape of the binomial distribution	569
	29.4 Binomial probability function	570
	29.5 Binomial probabilities by computer	576
30	Conditional probability	583
	30.1 Conditional probability: shrinking the sample space	587
	30.2 Conditional probability in pictures	588
	30.3 Conditionals and intersections	590
	30.4 Bayes' theorem for inverting	
		. 593
	30.5 Statistical independence	. 594
31	Total probability rule	605
	31.1 Total probability of an event	607
	31.2 The partition theorem in pictures	610
	31.3 Some examples	611
IX	Statistical Inference	621
32	Hypothesis tests	623
	32.1 What is statistical inference?	623
	32.2 A simple hypothesis test	626
	32.3 Principles of hypothesis testing	633
33	Hypothesis testing in practice	651
	33.1 Presidents	652
	33.2 Deep-sea divers	656
	33.3 Sports stars	657

	33.4 Role of hypothesis testing in science	. 659
34	Estimation and likelihood	667
	34.1 Estimation	. 669
	34.2 Likelihood	. 670
	34.3 Finding the maximum likelihood estimate	. 674
	34.4 Estimators	. 677
	34.5 Role of likelihood in scientific modelling	. 681
x	Discrete Probability Distributions	687
35	Simulation and visualisation	689
	35.1 Simulation	. 691
	35.2 Histograms	693
	35.3 Histograms as empirical probability functions	. 695
36	Mean	703
-	36.1 The distribution mean	. 706
	36.2 Binomial distribution mean	712
	36.3 Combining random variables with constants	714
	36.4 Combining random variables	720
	36.5 Expectation of X^2 and other transformations	722
	36.6 Binomial mean explained	724
	36.7 Mean of estimators	. 726
37	Variance	735
	37.1 The distribution variance	. 737
	37.2 Variance properties	. 741
	37.3 Binomial distribution variance	. 743
	37.4 Standard deviation	. 745
	37.5 Variance of estimators	. 746
38	Discrete probability models	761
	38.1 Binomial distribution	. 762
	38.2 Poisson distribution	. 764
	38.3 Inference with the Poisson distribution	. 770
	38.4 Geometric distribution	. 778
	38.5 Negative binomial distribution	. 782
XI	Continuous Probability Distributions	797
39	Continuous random variables	799
	39.1 What does it mean to be continuous?	. 801
	39.2 Probability density function	. 804
	39.3 Calculating probabilities	. 810
	39.4 Inference with continuous random variables	. 815
	39.5 Mean and variance	. 817

40	Common continuous probability models			
	40.1	Uniform distribution	831	
	40.2	Exponential distribution	836	
	40.3	Gamma distribution	847	
	40.4	Inference with the exponential distribution	851	
41	Normal distribution and inference			
	41.1	Normal distribution	868	
	41.2	The central limit effect	877	
	41.3	One-size-fits-all statistical inference	882	

XII Linear Regression

897

42	Fittin	g linear functions: theory and practice	899	
	42.1	Finding relationships between variables	900	
	42.2	Key questions	902	
	42.3	The simple linear model	902	
	42.4	The method of least squares	907	
	42.5	Fitting a linear function to data; a simple example .	910	
	42.6	Fitting a linear function to data; a more complex		
		example	912	
	42.7	Fitting the simple linear model using R \ldots	913	
43 Quantifying relationships		ntifying relationships	923	
	43.1	Finding P-values using R	927	
	43.2	False positives, or Type I errors	928	
	43.3	False negatives, or Type II errors	929	
	43.4	Confidence intervals	930	
Deferences				

945

Index

955