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Preface

This book is aimed at university students in the sciences who are
not planning on continuing with a degree in mathematics, statistics,
physics, or computer science, but who nevertheless need to learn
some more mathematics and statistics for their science degrees.
So, for example, if you’re studying a discipline such as chemistry,
molecular biology, biochemistry, physiology, geography, psychol-
ogy, geology, or ecology, you will find this book useful for learning
the mathematics and statistics you will need in your scientific career.

And you will need to know some mathematics and statistics,
nothing more certain. You won’t need to know a lot of theory – no
theorems or proofs or corollaries or lemmas or things like that will
be required – and you might not need to know a lot of advanced
techniques, but nowadays science has become so quantitative that
mathematics and statistics simply cannot be avoided.

Although this is certainly true, mathematics and statistics are
not always taught in a way that is appropriate for students who
want to learn useful techniques, but don’t need to know any theory.
Therefore, in this book we have taken what we think is a very
different approach. Firstly, we have covered only those topics that
we believe to be directly useful to a practising scientist. If it’s
something that we have never used ourselves in practice, then we
simply leave it out. For example, the theory of Gaussian elimination
is something we learned in detail ourselves, but have never used in
practice. Ever. Not one of us has solved a large linear system in any
way other than using a piece of software. Sure, the software uses
Gaussian elimination. If you write the software you’ll need to know
how to do that. But if you just want to use the software, knowledge
of the underlying theory is a step too far. Similarly, who now draws
two-dimensional surfaces by hand? We don’t. In fact, we probably
can’t, not any more; it’s been too long since we learned how to do
it, but never did it again. But then, why would we want to, when a
computer can do that job so much more efficiently?

Secondly, each topic is approached in a way that focuses on how
that topic is applied, how it can be used in practice. We don’t prove
theorems, or give results and propositions; we give no lemmas.
Many times we simply state a result, without proving that it’s ac-
tually correct. But that again is how scientists operate. They don’t
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vi Preface

need to know the detailed theoretical background of why it works.
They just need to know that it does work, and how to use it.

Of course, there are dangers in an approach like this. It’s not un-
common for scientists to study complex and difficult problems, for
which basic mathematical and statistical techniques are insufficient.
Sometimes, application of the basic methods can lead to errors and
problems; often, an understanding of why the basic result is true
is needed. However, these cases are the exception rather than the
rule. When scientists meet problems of this nature they can learn
the theory then, should they wish to do so. To present the theory
too soon serves only to hinder rather than to help.

There is, unfortunately, a lot that a book of this type simply
cannot cover. After all, we don’t want to end up with a book so
large that it could not possibly be carried around. So we assume
that you’re already familiar with the basic operations of arithmetic,
algebra and trigonometry. We assume that you can add fractions,
take square roots and cube roots, factor polynomials, sketch straight
lines and parabolas, and so on.

If you have no idea of how to do these things, then we suggest a
more foundational mathematics/statistics book would be a lot better
for you. If you’ve already learned how to do these things, but aren’t
too confident about them – maybe you learned them at school a
long time ago and you’ve forgotten – then, fortunately, there are
many places on the internet that can help you.

One of our favourite places to brush up on mathematical and
statistical stuff that you may have forgotten is the Khan Academy.
This site covers a huge amount of foundation material. It has prob-
lems, solutions and instructional videos. It explains things clearly.
We recommend it highly.

Another excellent site is mathsisfun.com. It’s not as comprehen-
sive as the Khan Academy site, but contains some lovely animated
demonstrations that are definitely worth watching.

Not only does this book omit a lot of foundational material, it
also omits some more advanced topics of great scientific impor-
tance. In particular, although we consider differential equations in
Chapters 25 and 26, the presentation there is only brief and doesn’t
cover such important things as higher-order ordinary differential
equations, systems of differential equations, or partial differential
equations. Similarly, we omit practically all the theory of linear
systems and matrices. These are all fundamentally important for
all branches of science, but there simply isn’t space to discuss ev-
erything in a single book. If you want to learn more about more
advanced topics like this, we suggest one of the many books on En-
gineering Mathematics, such as the book by Kreyszig or the book
by Greenberg. There are many other possibilities, all quite similar.

https://www.khanacademy.org/math
https://www.mathsisfun.com
https://www.wiley.com/en-us/Advanced+Engineering+Mathematics%2C+10th+Edition-p-9781119455929
https://www.pearson.com/us/higher-education/program/Greenberg-Advanced-Engineering-Mathematics-2nd-Edition/PGM81814.html
https://www.pearson.com/us/higher-education/program/Greenberg-Advanced-Engineering-Mathematics-2nd-Edition/PGM81814.html


Preface vii

How could this book be used? Well, we authors have used it to
teach a course called "Mathematics for Science" at the University
of Auckland, New Zealand. This course is designed for science
majors (particularly chemistry and biology majors) who don’t need
to do more advanced mathematics courses. We have also used the
statistics parts of this text to teach a statistics course in Auckland
with the similar goal of teaching science majors rather than statis-
tics or mathematics majors. This book could also be used as a
supplementary text for providing more scientific context and ex-
planation that is typically present in an undergraduate mathematics
textbook. However, it would not be all that suitable as a stand-alone
text to teach a course for continuing mathematics students, as the
necessary theoretical development is mostly absent.

We authors are a bit of a mixed bag. One of us (James Sneyd)
is an applied mathematician who specialises in the application
of mathematics to cell physiology; one of us (Rachel Fewster) is a
statistician who specialises in statistical ecology; one of us (Duncan
McGillivray) is a chemist who specialises in the study of biological
membranes using tools like neutron and X-ray scattering. However,
despite our different backgrounds and research interests, there is
one thing we all have in common. Each of us has used mathematics
and statistics on a daily basis to solve scientific problems. We know
what kind of methods are used. We know the kinds of things that
scientists need to know. And we hope that we have managed to
convey some of that knowledge to you, in such a way that this book
will remain relevant throughout your scientific career.

Auckland, James Sneyd

February 2022 Rachel Fewster

Duncan McGillivray
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