Lecture Notes in Mathematics 2285

Atsushi Inoue

Tomita's Lectures on Observable Algebras in Hilbert Space

Lecture Notes in Mathematics

Volume 2285

Editors-in-Chief

Jean-Michel Morel, CMLA, ENS, Cachan, France Bernard Teissier, IMJ-PRG, Paris, France

Series Editors

Karin Baur, University of Leeds, Leeds, UK Michel Brion, UGA, Grenoble, France Camillo De Lellis, IAS, Princeton, NJ, USA Alessio Figalli, ETH Zurich, Zurich, Switzerland Annette Huber, Albert Ludwig University, Freiburg, Germany Davar Khoshnevisan, The University of Utah, Salt Lake City, UT, USA Ioannis Kontoyiannis, University of Cambridge, Cambridge, UK Angela Kunoth, University of Cologne, Cologne, Germany Ariane Mézard, IMJ-PRG, Paris, France Mark Podolskij, University of Luxembourg, Esch-sur-Alzette, Luxembourg Sylvia Serfaty, NYU Courant, New York, NY, USA Gabriele Vezzosi, UniFI, Florence, Italy Anna Wienhard, Ruprecht Karl University, Heidelberg, Germany This series reports on new developments in all areas of mathematics and their applications - quickly, informally and at a high level. Mathematical texts analysing new developments in modelling and numerical simulation are welcome. The type of material considered for publication includes:

- 1. Research monographs
- 2. Lectures on a new field or presentations of a new angle in a classical field
- 3. Summer schools and intensive courses on topics of current research.

Texts which are out of print but still in demand may also be considered if they fall within these categories. The timeliness of a manuscript is sometimes more important than its form, which may be preliminary or tentative.

Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews, and zbMATH.

More information about this series at http://www.springer.com/series/304

Atsushi Inoue

Tomita's Lectures on Observable Algebras in Hilbert Space

Atsushi Inoue Department of Applied Mathematics Fukuoka University Fukuoka, Japan

 ISSN 0075-8434
 ISSN 1617-9692 (electronic)

 Lecture Notes in Mathematics
 ISBN 978-3-030-68892-9

 ISBN 978-3-030-68892-9
 ISBN 978-3-030-68893-6 (eBook)

 https://doi.org/10.1007/978-3-030-68893-6

Mathematics Subject Classification: Primary: 46L99; Secondary: 46K10

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to the memory of my former supervisor late Professor Minoru Tomita

Preface

In 1967, M. Tomita presented his research on "standard forms of von Neumann algebras" at the international conference on C^* -algebras and their physical applications held at the University of Louisiana and at the fifth functional analysis symposium of Mathematical Society of Japan held in Sendai. This is an original theory that is the essence of noncommutative analysis. In 1970, M. Takesaki developed this theory and published the outcome of his work under the title "Tomita's Theory of Modular Hilbert Algebras and Its Applications" in Springer's Lecture Notes in Mathematics. This is known as the Tomita-Takesaki theory. I was a student of Professor Tomita from 1966 to 1971, and at that time, he did not mention to us anything about Tomita-Takesaki theory. He would come into the lecture room with a few sticks of chalks and lecture on research topics like "observable algebras", "operators and operator algebras on Krein spaces" and "noncommutative Fourier analysis" that were elaborated after the Tomita theory. At times, he was standing in front of the blackboard thinking and writing and suddenly he erased everything; it is certain that he was testing his mathematical thoughts of that moment. Personally, I could understand almost nothing of the contents of Tomita's lectures, so I was just keeping notes. However, I think that I naturally learned from him how to think about mathematics and how to approach mathematical problems. About 10 years later, I noticed that my research topic "unbounded operator algebras" is concerned with the theory of "observable algebras" presented in his aforementioned lectures. Thus, I started attending a lecture again for about 1 year. At that time, I got a copy of the previous lecture notes kept by my colleague H. Kurose, a student of Professor Tomita too, and read it myself in order to use in my research [16]. But, Tomita was not interested in publishing his results. So, as regards his research on "operators and operator algebras on Krein spaces", Y. Nakagami collaborated with him and the paper "Triangular Matrix Representation for Self-Adjoint Operators in Krein Spaces" was published in Japanese J. Math. in 1988 [23]. Nakagami continued his studies as the only author, resulting in the papers [21, 22]. Another of Tomita's students, S. Ôta, studied "Lorentz algebras on Krein spaces" [24]. The theory of observable algebras is closely related to operator algebras and its related fields. The Tomita-Takesaki theory is a special case of this theory, every observable algebra can

be regarded as an operator algebra on a Pontryagin space with codimension 1 and the representation theory of locally convex *-algebras results in this theory. From all these, one concludes that this theory provides the mathematical techniques that establish intimate connections between the operator algebras and quantum theories. Unfortunately, Professor Tomita passed away in 2015 without publishing his work on observable algebras. Afraid that this theory would perish without being used, I decided to write these notes based on his research materials:

- 1. Notes of Professor Kurose and myself from Tomita's lectures.
- 2. Harmonic analysis on topological *-algebras [40].
- 3. Algebra of observables in Hilbert space [41].
- 4. Fundamental of noncommutative Fourier analysis [42].

There were many unproved parts, as well unclear parts in the preceding sources. This note is a compilation of the Tomita's observable algebras within the scope of what the author, who has been studying them for many years, could achieve. First, I would like to thank my supervisor Professor M. Tomita for giving me many mathematical ideas and for his constant warm generous attention. Many thanks are also due to Professor Y. Nakagami for checking this manuscript in detail and for giving me much advice and comments. Furthermore, I would like to thank Professors M. Fragoulopoulou, S. Ôta and M. Uchiyama for many useful and helpful suggestions. I was able to complete this manuscript by giving lectures to Dr. H. Inoue and Dr. M. Takakura on the contents of the present work, in Fukuoka University, as well as having many discussions with them. I would like to thank H. Inoue for his careful reading of my manuscript and comments.

Fukuoka, Japan July 2020 Atsushi Inoue

Contents

1	Introduction			
2	Fun	als of Observable Algebras	5	
	2.1	Q^* -al	gebras and T^* -algebras	5
	2.2	Struct	ure of CQ^* -algebras	13
	2.3	Functi	onal Calculus for Self-adjoint Trio Observables	16
	2.4	 .4 *-Automorphisms of Observable Algebras .5 Locally Convex Topologies on T*-algebras 		
	2.5			
	2.6	Comm	nutants and Bicommutants of T^* -algebras	41
3 Density Theorems			eorems	53
	3.1	Von N	eumann Type Density Theorem	53
	3.2	Kapla	nsky Type Density Theorem	62
4	Structure of <i>CT</i> *-Algebras			69
	4.1	Decon	nposition of CT*-Algebras	70
	4.2	Classi	fication of CT*-Algebras	77
	4.3	Commutative Semisimple CT^* -Algebras		93
	4.4	Some	Results Obtained from T^* -Algebras	98
		4.4.1	Projections Defined by T^* -Algebras	98
		4.4.2	The Vector Representation of the CT^* -Algebra	
			Generated by a <i>T</i> *-Algebra	98
		4.4.3	Construction of Semisimple CT^* -Algebras	
			from a <i>T</i> *-Algebra	106
		4.4.4	Semisimplicity and Singularity of T^* -Algebras	110
		4.4.5	A Natural Weight on the von Neumann Algebra	
			Defined from a <i>T</i> *-Algebra	112
		4.4.6	Density of a \ast -Subalgebra of a T^{\ast} -Algebra	116

5	Applications					
	5.1	Standard T*-Algebras and the Tomita-Takesaki Theory				
	5.2	Admissible Invariant Positive Invariant Sesquilinear Forms				
		on a *-Algebra	131			
		5.2.1 T^* -Algebras Generated by Admissible i.p.s. Forms	132			
		5.2.2 Admissibility and Representability of i.p.s. Forms	134			
		5.2.3 Strongly Regular i.p.s. Forms	141			
		5.2.4 Decomposition of i.p.s. Forms	146			
		5.2.5 Regularity and Singularity of i.p.s. Forms	147			
	5.3	Positive Definite Generalized Functions in Lie Groups	151			
	5.4	Weights in C*-Algebras	158			
A	Functional Calculus, Polar Decomposition and Spectral					
	Resolution for Bounded Operators on a Hilbert Space					
	A.1	Spectrum	165			
	A.2	Continuous Functional Calculus of a Self-Adjoint Bounded				
		Linear Operator	165			
	A.3	Polar Decomposition for a Bounded Linear Operator	166			
	A.4	Spectral Resolution for a Bounded Self-Adjoint Operator	167			
	A.5	Functional Calculus with Borel Functions	168			
B	Spectral Resolution of an Unbounded Self-Adjoint Operator					
	and	Polor Decomposition of a Closed Operator in a Hilbert Space	171			
	B .1	Basic Definitions and Results for Unbounded Linear Operators	171			
	B .2	Spectral Resolution of Unbounded Self-Adjoint Operators	174			
	B .3	Functional Calculus for Unbounded Self-Adjoint Operators	174			
	B .4	Polar Decomposition of Closed Linear Operators	175			
С	Banach *-Algebras, C*-Algebras, von Neumann Algebras					
	and	and Locally Convex *-Algebras				
	C .1	Banach *-Algebras	177			
	C .2	C^* -Algebras and von Neumann Algebras	178			
	C.3	Density Theorems	179			
	C.4	Locally Convex *-Algebras	180			
Re	References					
In	Index					