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Preface

In 1967, M. Tomita presented his research on “standard forms of von Neumann alge-
bras” at the international conference on C∗-algebras and their physical applications
held at the University of Louisiana and at the fifth functional analysis symposium
of Mathematical Society of Japan held in Sendai. This is an original theory that
is the essence of noncommutative analysis. In 1970, M. Takesaki developed this
theory and published the outcome of his work under the title “Tomita’s Theory
of Modular Hilbert Algebras and Its Applications” in Springer’s Lecture Notes
in Mathematics. This is known as the Tomita-Takesaki theory. I was a student of
Professor Tomita from 1966 to 1971, and at that time, he did not mention to us
anything about Tomita-Takesaki theory. He would come into the lecture room with
a few sticks of chalks and lecture on research topics like “observable algebras”,
“operators and operator algebras on Krein spaces” and “noncommutative Fourier
analysis” that were elaborated after the Tomita theory. At times, he was standing in
front of the blackboard thinking and writing and suddenly he erased everything; it
is certain that he was testing his mathematical thoughts of that moment. Personally,
I could understand almost nothing of the contents of Tomita’s lectures, so I was
just keeping notes. However, I think that I naturally learned from him how to think
about mathematics and how to approach mathematical problems. About 10 years
later, I noticed that my research topic “unbounded operator algebras” is concerned
with the theory of “observable algebras” presented in his aforementioned lectures.
Thus, I started attending a lecture again for about 1 year. At that time, I got a copy
of the previous lecture notes kept by my colleague H. Kurose, a student of Professor
Tomita too, and read it myself in order to use in my research [16]. But, Tomita was
not interested in publishing his results. So, as regards his research on “operators
and operator algebras on Krein spaces”, Y. Nakagami collaborated with him and
the paper “Triangular Matrix Representation for Self-Adjoint Operators in Krein
Spaces” was published in Japanese J. Math. in 1988 [23]. Nakagami continued his
studies as the only author, resulting in the papers [21, 22]. Another of Tomita’s
students, S. Ôta, studied “Lorentz algebras on Krein spaces” [24]. The theory of
observable algebras is closely related to operator algebras and its related fields. The
Tomita-Takesaki theory is a special case of this theory, every observable algebra can
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viii Preface

be regarded as an operator algebra on a Pontryagin space with codimension 1 and
the representation theory of locally convex ∗-algebras results in this theory. From
all these, one concludes that this theory provides the mathematical techniques that
establish intimate connections between the operator algebras and quantum theories.
Unfortunately, Professor Tomita passed away in 2015 without publishing his work
on observable algebras. Afraid that this theory would perish without being used, I
decided to write these notes based on his research materials:

1. Notes of Professor Kurose and myself from Tomita’s lectures.
2. Harmonic analysis on topological ∗-algebras [40].
3. Algebra of observables in Hilbert space [41].
4. Fundamental of noncommutative Fourier analysis [42].

There were many unproved parts, as well unclear parts in the preceding sources.
This note is a compilation of the Tomita’s observable algebras within the scope
of what the author, who has been studying them for many years, could achieve.
First, I would like to thank my supervisor Professor M. Tomita for giving me many
mathematical ideas and for his constant warm generous attention. Many thanks
are also due to Professor Y. Nakagami for checking this manuscript in detail and
for giving me much advice and comments. Furthermore, I would like to thank
Professors M. Fragoulopoulou, S. Ôta and M. Uchiyama for many useful and
helpful suggestions. I was able to complete this manuscript by giving lectures to
Dr. H. Inoue and Dr. M. Takakura on the contents of the present work, in Fukuoka
University, as well as having many discussions with them. I would like to thank
H. Inoue for his careful reading of my manuscript and comments.

Fukuoka, Japan Atsushi Inoue
July 2020
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