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Introduction

The main result of [HJP12], which is Theorem A below, describes the absolute
Galois group of distinguished semi-local algebraic extensions of Q (among others)
as free products of �̂l and local Galois groups. The proof of Theorem A depends
on two results of Florian Pop from [Pop96] and on the main result of [Pop95].

The aim of this monograph is to work out proofs of the above mentioned result of
[HJP12] along with the supporting results of Pop. In addition we follow Melnikov’s
construction in [Mel90] of free products of profinite groups. Finally, we generalize
the theory of free products of profinite groups and their subgroups developed in
[Har87], and present results appearing in [HJP05] needed in the proofs.

Absolute Galois groups

Our result is an instance of a positive answer to the generalized inverse problem of
Galois theory. Originally, this problem asked whether every finite group occurs as a
Galois group of a Galois extension of Q. For many groups this is the case [MaM99],
but the general case is still wide open.

One way to realize a finite group over Q is to do it in pieces. That is, one has to
properly solve finite embedding problems over Q. Again, there are many examples
of such problems which are properly solvable [MaM99]. But we do not have a
characterization of all finite embedding problems over Q that are properly solvable.
In particular, the structure of the absolute Galois group Gal(Q) of Q is unknown.

Still, there are several families of fields with known absolute Galois groups. The
most renowned example of a field with this property isC(C), with C transcendental over
C, or, more generally, finite extensions of C(C). The Riemann Existence Theorem
[Voe96, p. 37, Thm. 2.13] implies that Gal(C(C)) is the free profinite group on
2ℵ0 generators ([Rib70, p. 70, Thm. 8.1]). An analogous result holds for an arbitrary
algebraically closed field of characteristic 0. Various “patching methods” give similar
results in the case where  is algebraically closed of positive characteristic (see
[Hrb95], [Pop96], or [Jar11]).

vii



viii Introduction

By definition, the absolute Galois group of a field  is trivial if  is algebraically
closed or, more generally, separably closed.

More subtle is the case where  is the field R of real numbers or, more generally,
real closed. In this case, Gal( ) is isomorphic to the group with two elements
[Lan93, p. 452, Thm. 2.2].

Much more difficult is the case where  is a finite extension of Q? or of F? ((C))
for some prime number ?. In both cases  is complete with respect to a discrete
valuation and Gal( ) = ) ⋉ , is the semi-direct product of its “maximal tame
quotient” ) and its “wild part”, (Lemma 8.2.2). By Iwasawa, the tame group ) is
generated by two elements f, g satisfying the relation fgf−1 = g@ . The wild group
, is a free pro-? group of rank ℵ0.

For the exact structure of Gal( ) by generators, relations, and “conditions” we
refer the reader to [NSW20, p. 418, Thm. 7.5.13] in the case where char( ) = ?

due to Helmut Koch [Koc67] and to [NSW20, p. 419, Thm. 7.5.14] for char( ) = 0

and ? ≠ 2 due to Uwe Jannsen and Kay Wingberg [JaW82]. The case where
char( ) = 0 and ? 2 was treated by Volker Diekert under the condition that
 (
√
−1)/ is unramified. See [NSW20, p. 431] or [Die84].

The field Qtot,Y

From our point of view, more important than the fields Q? and F@ ((C)) are their
algebraic parts. We consider a classically local prime p of a field  . Thus, the
“completion”  ̂p of  with respect to p is either a finite extension of Q? or of
F@ ((C)), where ? is a prime number and @ is a power of a prime number, or  ̂p = R.
Then, the algebraic part  p =  sep ∩  ̂p of  ̂p is the Henselian (respectively, real)
closure of with respect to p. This closure is uniquely defined up to -isomorphism.
By a lemma of Krasner (in the Henselian case), Gal( p) is isomorphic to Gal( ̂p),
so whatever information we have on Gal( ̂p) applies also to Gal( p).

This allows us to consider a finite set ( of classically local primes of  and set
 tot,( =

⋂
p∈(

⋂
d∈Gal( )  

d
p . By [Pop96, Thm. 3],

Gal( tot,() �
∏
p∈(
∗

∏
d∈'p

∗ Gal( p)d .

Here,
∏
d∈'p
∗ Gal( p)d stands for the free product of the profinite groups Gal( p)d

(Definition 4.1.1), while
∏

p∈(∗ denotes the free product of finitely many profinite
groups following the operator.

We refer to the fields  tot,( as fields of “semi-local type”.

The fields Qsep(2) and Qsep[2]

Next we consider fields of another type, “with no arithmetic”. Basic Galois theory
shows that the absolute Galois group of a finite field is isomorphic to Ẑ := lim←−−Z/=Z
[FrJ08, p. 15, Sec. 1.5]. It is not difficult to show that the latter property extends

=



Introduction ix

to non-principal ultra products [FrJ08, p. 141, Sec. 7.7] of finite fields. If � is a
field of this type and char(�) = 0, then Gal(� ∩ Q̃) is procyclic. Thus, there exists
a f ∈ Gal(Q) such that � ∩ Q̃ is the fixed field Q̃(f) of f in Q̃. Conversely, for
each f ∈ Gal(Q) there exists a non-principal ultraproduct � of finite fields such that
Q̃(f) = � ∩ Q̃ [Ax67, Thm. 5].

Note that for an arbitrary f ∈ Gal(Q) it may happen that Gal(Q̃(f)) is not
isomorphic to Ẑ. For example, this is the case if f = 1 or f is an involution.
However, Gal(Q̃(f)) � Ẑ for almost all f ∈ Gal(Q) in the sense of the Haar
measure of Gal(Q) [Ax67, Prop. 3].

The proof of the latter result uses the theory of cyclotomic extensions of Q.
An alternative proof of this theorem applies Hilbert’s irreducibility theorem for Q,
hence it holds for every Hilbertian field  . Moreover, the following result holds for
every positive integer 4 and for almost all 2 := (f1, . . . , f4) ∈ Gal( )4: the group
Gal( sep (2)) is isomorphic to the free profinite group �̂4 on 4 generators [FrJ08,
p. 379, Thm. 18.5.6]. If  is also countable, then for almost all 2 ∈ Gal( )4 the field
 sep (2) is, in addition, PAC [FrJ08, p. 380, Thm. 18.6.1]. This means that every
geometrically integral variety over  sep (2) has a  sep (2)-rational point.

The latter property implies that the Henselian closures (and the real closures)
of almost all fields  sep (2) are separably closed (a result of Frey–Prestel [FrJ08,
p. 205, Cor. 11.5.5]). In this sense, these fields “lack arithmetic”.

Digging further down, we denote the maximal Galois extension of  in  sep (2)
by  sep [2]. Under the latter assumptions on  and 4, [FrJ08, p. 669, Thm. 27.4.8]
asserts that for almost all 2 ∈ Gal( )4 the field  sep [2] is PAC, the group
Gal( sep [2]) is isomorphic to the free profinite group �̂l on countably many
generators, and  sep [2] is Hilbertian.

The fields Qtot,Y[2]

As above, we consider a countable Hilbertian field  , a finite set ( of classically
local primes of  , and a positive integer 4. Given 2 := (f1, . . . , f4) ∈ Gal( )4, we
consider the fields  tot,( (2) =  tot,( ∩ sep (2) and  tot,( [2] =  tot,( ∩ sep [2] of
“mixed type”.

Our goal is to reproduce the description of Gal( tot,( [2]) as it appears in [HJP12,
Thm. 3.11] along with all supporting results from [Pop96], [Pop95], [Mel90], and
[Har87].

The main result

The main result of this monograph strengthens the main result of [HJP12].

Theorem A (Theorem 9.1.6) Let  be a countable Hilbertian field, ( a finite set

of classically local primes of  , and 4 a positive integer. Then, for almost all

2 ∈ Gal( )4 the field  tot,( [2] is Hilbertian, P(C, and ample. Moreover, for
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each p ∈ ( there exists a closed subset 'p of Gal( ) such that Gal( tot,( [2]) �
�̂l∗

∏
p∈(∗ ∏

d∈'p
∗ Gal( p)d .

Here an extension" of in tot,( is said to be P(C if every geometrically integral
curve Γ over " with a simple  dp -point for each p ∈ ( and every d ∈ Gal( )
has infinitely many "-rational points. Also, one says that " is ample if every
geometrically integral curve over " with a simple "-rational point has infinitely
many "-rational points [Jar11, p. 68, Def. 5.3.2].

The Hilbertianity of  tot,( [2] for almost all 2 ∈ Gal( )4 follows from [BSF13,
Thm. 1.1]. By [GeJ02],  tot,( [2] is P(C for almost all 2 ∈ Gal( )4. This implies
that " is ample [Pop96, Prop. 3.1].

Remark B The free factor � :=
∏

p∈(∗ ∏
d∈'p
∗ Gal( p)d appearing in Theorem A

depends (up to isomorphism) only on  and ( but not on the choice of the fields  p

nor on 2. In particular, this factor is isomorphic to Gal( tot,() (Remark 9.2.4).
We call � a Cantor free product over (, because each of the spaces 'p is homeo-

morphic to the Cantor middle-third set (Section 1.5).

Using the group-theoretic Lemma 4.7.5, Theorem A yields the following corol-
lary.

Corollary C (Remark 9.2.4 and Lemma 9.2.1) Let  be a countable Hilbertian

field, ( a finite set of classically local primes of  , and 4 a non-negative integer.

Then, for almost all 2 ∈ Gal( )4 and for each p ∈ ( there exists a closed subset 'p
of Gal( ) such that

Gal( tot,( (2)) � �̂4 ∗
∏
p∈(
∗

∏
d∈'p

∗ Gal( p)d .

Remark D If ( is an empty set, then � = 1. Thus, in this case, Corollary C and
Theorem A say that for almost all 2 ∈ Gal( )4 we have Gal( sep (2)) � �̂4
and Gal( sep [2]) � �̂l , as mentioned in the Subsection “The fields  sep (2) and
 sep [2]”.

A result of Pop

The proof of Theorem A depends on [Pop96, Thm. 2.8]:

Proposition E (The fundamental result, Proposition 8.4.3) Let ( be a finite set

of classically local primes of a countable Hilbertian field  . Consider an infinite

extension " of  in  tot,( which is ample and Hilbertian. Suppose that Gal(") is

G ,(-projective. Then, G ,( = G ,(,max and G ,( has an étale profinite system R
of representatives for its Gal(")-orbits such that Gal(") � �̂l∗

∏
Γ∈R∗ Γ.

Here, G ,( is the set of all groups Gal( p)d with p ∈ ( and d ∈ Gal( ) and the
symbol G ,(,max stands for the set of all maximal elements of G ,( .

We say that Gal(") is G ,(-projective if every finite G ,(-embedding problem
for Gal(") is solvable:
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Let � be a profinite group and let G be a subset of the set of all closed subgroups
of �. A finite G-embedding problem for � is a triple (i : � → �, U : �→ �, B),
where U : �→ � is an epimorphism of finite groups, i : � → � is a homomorphism
of profinite groups, and B is a set of subgroups of � closed under �-conjugation and
taking subgroups, such that for each Γ ∈ G there exists a homomorphism WΓ : Γ→ �

with U ◦ WΓ = i|Γ and WΓ (Γ) ∈ B. We say that a homomorphism W : � → � is a
solution if U ◦ W = i. The solution is strong if W(Γ) ∈ B for each Γ ∈ G. Finally,
the embedding problem is proper if i is surjective. In this case, a solution W to the
embedding problem is proper if W is surjective.

We write Subgr(�) for the set of all closed subgroups of � and equip Subgr(�)
with the étale topology. A base for this topology is the family of all open subgroups
� of �. A subset R of Subgr(�) is said to be étale profinite if R is a profinite space
under the induced étale topology of Subgr(�).

Another result of Pop

The proof of Proposition E depends on the following consequence of a variant of
[Pop95, Thm. 3]:

Proposition F (Proposition 6.4.8) Let � be a profinite group and let G be a subset

of Subgr(�) of P-type. Suppose that every finite G-embedding problem for � has a

proper solution.

Then, every finite G-embedding problem for � has a proper strong solution.

We do not repeat the definition ofP-type here and only mention that by Definition
6.4.5, G ,( is of P-type for every field  and every finite set ( of classically local
primes of  .

Supporting results

In order to prove Proposition E we also need, in addition to Proposition F, the
following result.

Lemma G (Lemma 8.4.2) Let " be an ample Hilbertian field and let G be a strictly

closed Gal(")-invariant subset of Subgr(") of P-type. Suppose that Gal(") is

G-projective. Then, every finite proper G-embedding problem for Gal(") has a

proper strong solution.

The proof of Lemma G uses the main Galois-theoretic property of ample fields:
Every finite split embedding problem over " (C) with " as in Lemma G and C
transcendental over " is properly solvable (see [Pop96, Main Theorem B] or [Jar11,
p. 89, Thm. 5.10.2]).

The group-theoretic assumption in Lemma G is satisfied if we assume a stronger
field-theoretic assumption on ":
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Lemma H (Lemma 8.3.5) Let " be an infinite field and X a family of separable

algebraic extensions of " . Suppose that G := {Gal(" ′)}" ′∈X is étale compact and

" is PXC (Definition 8.3.2). Then, Gal(") is G-projective.

Generalized Iwasawa isomorphism theorem

In addition to results F and G, the proof of Proposition E uses the following gener-
alization of Iwasawa isomorphism theorem [Pop96, Thm. 4.5]:

Proposition I (Proposition 7.2.2) Let� and� ′ be profinite groups. LetG (resp.G′)
be a subset of Subgr(�) (resp Subgr(� ′)) that satisfies the following conditions:

(a) rank(�) ≤ ℵ0 (resp. rank(� ′) ≤ ℵ0).

(b) G (resp. G′) is an étale compact set of representatives of the distinct conjugacy

classes in (G�)max.

(c) � (resp. � ′) is properly strongly G-projective (resp. G′-projective).

(d) There is a homeomorphism ` :
⋃

Γ∈G Γ→
⋃

Γ′∈G′ Γ
′ that satisfies the following

condition: for every Γ ∈ G there is a Γ′ ∈ G′ such that ` |Γ : Γ → Γ′ is an

isomorphism of groups.

Then, there is an isomorphism \ : � → � ′ such that \ (G�) = (G′)�′ .

Condition (b) in Proposition I is achieved by the following result.

Lemma J (Lemma 7.1.3) Let � be a profinite group of rank ≤ ℵ0 and let G be a

�-invariant étale compact subset of Subgr(�) such that G = Gmax and� is strongly

G-projective. Then,G has an étale compact subset of representatives for its�-orbits.

Tel Aviv University Dan Haran

August 2021 Moshe Jarden
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