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Preface

Convexity has a long history that could date back to Ancient Greece
geometers. Probably the first definition of convexity was given by Archimedes
of Syracuse in the third century BC: There are in a plane certain terminated
bent lines, which either lie wholly on the same side of the straight lines joining
their extremities, or have not part of them on the other side.

Over the subsequent centuries, convexity theory has been developed in
various geometric frameworks with outstanding contributions of many great
mathematicians. The most active period in the study of convex sets was in the
late nineteenth century and the early twentieth century with the
quintessential work done by Hermann Minkowski that was summarized in the
books [219, 220] published in 1910–1911 after his death. Minkowski laid the
foundations of the general theory of convex sets in finite-dimensional spaces.
In particular, he established there the fundamental convex separation theo-
rem, which since has played a crucial role in convex analysis and its
applications.

A systematical study of convex functions has been started by Werner
Fenchel who discovered, in particular, seminal results on conjugacy corre-
spondence and convex duality contained in his very influential mimeographed
lecture notes [131] from a course given at Princeton University in 1951.

Although some constructions and results on generalized differentiation of
convex functions can be found in Fenchel [131], the fundamental notion of
subdifferential (a collection of subgradients) for an extended-real-valued
convex function should be attributed to Jean-Jacques Moreau [264] and
R. Tyrrell Rockafellar [302], who introduced this notion independently in
1963. The revolutionary idea of a set-valued generalized derivative satisfying
rich calculus rules has given rise to convex analysis, a new area of mathematics
where analytic and geometric ideas are so nicely interrelated and jointly
produce beautiful results for sets, set-valued mappings, and functions.

A milestone in the consolidation of the new discipline, at least in
finite-dimensional spaces, was Rockafellar’s monograph “Convex Analysis”
[306] published in 1970, which coined the name of this area of mathematics.
Over the subsequent years, numerous strong results have been discovered in
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this area and many excellent books have been published on various aspects of
convex analysis and its applications in finite and infinite dimensions. Among
them, we mention the books by Bauschke and Combettes [34], Bertsekas et al.
[37], Borwein and Lewis [48], Boyd and Vandenberghe [62], Castaing and
Valadier [71], Ekeland and Temam [122], Hiriart-Urruty and Lemaréchal
[164] and its abridge version [165], Ioffe and Tikhomirov [174], Nesterov [279],
Pallaschke and Rolewicz [285], Phelps [290], Pshenichnyi [294], and Zălinescu
[361].

It has been well recognized that convex analysis provides the mathemat-
ical foundations for numerous applications in which convex optimization is
the first to name. The presence of convexity makes it possible not only to
investigate qualitative properties of optimal solutions and derive efficient
optimality conditions, but also develop and justify numerical algorithms to
solve convex optimization problems with smooth and nonsmooth data.
Convex analysis and optimization have an increasing impact on many areas of
mathematics and applications including control systems, estimation and
signal processing, communications and networks, electronic circuit design,
data analysis and modeling, statistics, economics and finance, etc. In recent
times, convex analysis has become more and more important for applications
to some new fields of mathematical sciences and practical modeling such as
computational statistics, machine learning, sparse optimization, location
sciences, etc.

Despite an extensive literature on diverse aspects of convex analysis and
applications, our book has a lot to offer to researchers, students, and practi-
tioners in these fascinating areas. We split the book into two volumes, and
now present to the reader’s attention the first volume, which is mainly
devoted to theoretical aspects of convex analysis and related fields where
convexity plays a crucial role. The second volume [240] addresses various
applications of convex analysis including those areas, which were listed above.

The first volume is devoted to developing a unified theory of convex sets,
set-valued mappings, and functions in vector and topological vector spaces
with its specifications to Banach and finite-dimensional settings. These
developments and expositions are based on the powerful geometric approach of
variational analysis, which resides on set extremality with its characterizations
and significant modifications in the presence of convexity. This approach
allows us to consolidate the device of fundamental facts of generalized differ-
ential calculus and obtain novel results for convex sets, set-valued mappings,
and functions in finite-dimensional and infinite-dimensional settings.

Some aspects of the geometric approach to convex analysis in finite-
dimensional spaces were given in our previous short book [237] in which the
reader was provided with an easy path to access generalized differentiation of
convex objects in finite dimensions and its applications to theoretical and
algorithmic topics of convex optimization and facility location. Now we lar-
gely extend in various directions the previous developments in both
finite-dimensional and infinite-dimensional spaces while covering a much
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broader spectrum of topics and results related to convexity and its
applications.

Besides major topics of convex analysis, we present in this book several
important developments, which have been either motivated by the extensions
of their convexity prototypes, or being largely based on convexity methods and
results. The first group includes variational principles of Ekeland’s type for
lower semicontinuous functions that are strongly related to Bishop-Phelps’s
density theorems and their proofs for nonsolid convex sets. The second group
concerns convexified nonsmooth analysis of nonconvex functions admitting
convex generalized directional derivatives for which calculus rules and other
properties are based on methods and results of convex analysis. All of this
allows us to title our book as “Convex Analysis and Beyond.”

The book consists of seven chapters and is organized as follows. Chapter 1
addresses the mathematical foundations of convex analysis. For the reader’s
convenience, we make the book self-contained and present here basic concepts
and results on topological spaces and topological vector spaces scattered in
the literature and give their short while rather detailed proofs. The selected
concepts and results are used further to study algebraic, geometric, and
topological properties of convex sets and functions. Also, this chapter includes
the fundamental theorems of functional analysis largely employed in the book,
accompanied by their simplified albeit complete proofs.

Chapter 2 is devoted to basic theory of convexity for sets and functions in
linear spaces and topological vector spaces with some specifications in finite
dimensions. We pay special attention to convex sets and derive for them
various versions of convex separation theorems, which play a pivoting role in
further developments. For extended-real-valued functions, the convexity is
defined geometrically with giving analytical representations, describing
operations over functions that keep convexity, and studying major topological
properties of convex functions. The last section of this chapter contains a
more recent material on generalized relative interiors of convex sets in
infinite-dimensional spaces, including new results in this direction.

In Chapter 3 we start the exposition and development of a unified theory of
generalized differentiation for convex sets, set-valued mappings, and
extended-real-valued functions based on the aforementioned variational
geometric approach. We mainly concentrate here on the general setting of
topological vector spaces with presenting also important finite-dimensional
specifications. The essence of our approach is the notion of set extremality and
the corresponding convex extremal principle for systems of sets, which goes
along with the general extremal principle of variational analysis while sig-
nificantly reflecting the specific of convex sets and being closely related to
convex separation. The main calculus result obtained is the normal cone
intersection rule derived under various qualification conditions. Based on this
result, we establish comprehensive rules for coderivatives of set-valued
mappings and subgradients of extended-real-valued functions in topological
vector space and finite-dimensional settings with special elaborations for
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classes of maximum and distance functions. Finally, in this chapter, we pre-
sent recent and new results on polyhedral calculus rules in topological vector
spaces that essentially extend their prototypes in finite dimensions.

Chapter 4 enters the consideration of Fenchel conjugates of extended-real-
valued functions, which are among the strongest tools of convex analysis and
are closely related to convex duality. Based on the previous study of set
extremality and convex separation, we first develop here a comprehensive
conjugate calculus under appropriate qualification conditions in the three
major settings: in general topological vector spaces with using nonempty
interiors of sets and the continuity of functions, under polyhedrality
assumptions in topological vector spaces with using quasi-relative interiors of
sets, and in finite dimensions with the usage of relative interiors.
Furthermore, enhanced rules of conjugate and generalized differential calculus
are developed in this chapter under relaxed qualification conditions by
employing variational techniques in Banach spaces. A special attention is paid
to subdifferentiation of the pointwise suprema of convex functions over infi-
nite sets with the usage of relationships between subgradients and directional
derivatives, and to computing subgradients and conjugates of marginal/
optimal value functions, which are highly important for numerous applica-
tions. Finally, Chapter 4 presents major developments on Fenchel duality
including quite recent and new results on this topic in various space frame-
works and under diverse qualification conditions.

Chapter 5 contains complete proofs of major variational principles of
variational analysis and their convex counterparts. We highlight, in partic-
ular, novel approximate and exact versions of the extremal principle for closed
convex sets in general Banach spaces. These results give necessary and suf-
ficient conditions for set extremality that are different in several aspects from
the corresponding versions of the extremal principle in nonconvex settings
given in the book of Mordukhovich [228]. As a consequence of the extremal
principle, we establish new approximate and exact characterizations of convex
separation for closed convex subsets of Banach spaces without any (gener-
alized) relative interiority assumptions. Among the topics presented in this
chapter, where the developed variational principles and arguments play a
large role, we mention calculus of e-subgradients with and without qualifi-
cation conditions, mean value theorems for continuous and lower semicon-
tinuous convex functions, maximal monotonicity of subgradient mappings,
and subdifferential characterizations of Gâteaux and Fréchet differentiability
together with their generic versions. This chapter is concluded by considering
matrix-dependent spectral and singular functions with giving a simple proof
of the seminal von Neumann trace inequality and the subsequent subdiffer-
ential study of these functional classes, which are highly important in
applications.

In Chapter 6 we address miscellaneous topics of convex analysis that
combine classical results with more recent themes that play a crucial role in a
variety of theoretical and algorithmic applications to practical models
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considered in the second volume of our book. Classical topics include
Carathéodory, Helly and Radon theorems, Farkas lemma, duality relationships
between tangent and normal cones and their calculations for polyhedral sets,
horizon cones and horizon functions at infinity, etc. More recent develop-
ments concern Nesterov’s smoothing techniques and related topics on strong
convexity and strong monotonicity in finite and infinite dimensions, the study
of perspective functions at infinity as well as of signed distance and minimal
time functions together with the new class of signed minimal time functions.
Although the main emphasis in the study of these classes of functions is on
their convex analysis, some important results do not require any convexity
assumptions.

The final Chapter 7 addresses nondifferentiable while nonconvex functions
that is different from the previous chapters. However, the study of such
functions is mainly based on the machinery of convex analysis. This really
goes beyond convex analysis by using certain convexification procedures. The
major attention is paid in this chapter to the parallel investigation of two
convex-valued directionally generated subdifferentials of locally Lipschitzian
functions on normed spaces that are associated with Clarke’s generalized
directional derivative and the Dini contingent derivative/subderivative. We
present comprehensive calculus rules and other results for these and related
constructions including quite recent and new developments. Some properties
of regular and limiting subgradients are also reviewed here with their usage in
deriving precise subdifferential formulas for the signed distance functions
associated with convex sets. Finally, we include major results for a very
important class of DC (difference of convex) functions with applications to
nonconvex duality.

Each chapter contains the exercise section, where we formulate numerous
exercises with different levels of difficulties and provide hints to some of them.
Many figures and examples are given throughout the whole text. Furthermore,
the last section of each chapter presents extensive commentaries, which play a
highly significant role in the book. Besides detailed historical information and
reviewing the genesis of major ideas and motivations, we provide in the
commentaries rather elaborated discussions on some relates topics, which are
not included in the basic text; e.g., relationships with similar results of non-
convex variational analysis, subdifferentiation of integral functionals, direc-
tionally generated subgradient mappings for nonconvex extended-real-valued
functions, etc. All of this makes the book to be more complete and leads the
reader to additional advanced studies.

Different parts of this book aim at their primary groups of readers. The
entire book should be of interest for experts in convex and variational anal-
ysis, optimization, and their numerous applications as well as for mathe-
maticians and applied scientists in other areas who wish to learn more on this
subject. Based on our own experience in teaching some parts of this book at
Portland State University and Wayne State University, we envision that the
book with the exercises therein will be useful for teaching graduate classes in
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mathematical sciences that are also accessible to advanced students in eco-
nomics, engineering, and other applied areas. Large parts of the book con-
cerning convex analysis in finite-dimensional and normed spaces present well
accessible material for upper undergraduate students.

Over the years of our work on the book, we have enjoyed fruitful discus-
sions with many prominent experts in convex and variational analysis, opti-
mization, and their applications whose publications are included in the
reference list. Our special thanks go to Terry Rockafellar, to the late Jon
Borwein and Diethard Pallaschke, and also to Yurii Nesterov, Nguyen Dong
Yen, and Constantin Zălinescu. We are very grateful to all our collaborators
of the papers and projects that are used in the book. Our students Anuj Bajaj,
Liam Jemison, Scott Lindstrorm, Will Maxwell, Dao Nguyen, Trang Nguyen,
Nguyen Xuan Quy, and Gary Sandine helped us in the book preparation and
proofreading. Finally, both authors thank the National Science Foundation,
while the first author also thanks the Air Force Office of Scientific Research
for their continuing support.

Ann Arbor, MI, USA Boris S. Mordukhovich
Portland, OR, USA
April 2022

Nguyen Mau Nam
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