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Foreword

If everyone were exposed to mathematics in its natural

state, with all the challenging fun and surprises that that

entails, I think we would see a dramatic change both in the

attitude of students toward mathematics, and in our

conception of what it means to be “good at math.”

Paul Lockhart

I’m really hungry for surprises because each one makes us

ever-so-slightly but substantially smarter.

Tadashi Tokieda

Mathematics, when appropriately approached, can provide us with plentiful pleas-

ant surprises. This is confirmed by a Google search of “mathematical surprises,”

which, surprisingly, yields almost half a billion items. What is a surprise? The ori-

gins of the word trace back to Old French with roots in Latin: “sur” (over) and

“prendre” (to take, to grasp, to seize). Literally, to surprise is to overtake. As a noun,

surprise is both an unanticipated or bewildering event or circumstance, as well as

the emotion caused by it.

Consider, for example, an extract from a lecture by Maxim Bruckheimer1 on

the Feuerbach circle: “Two points lie on one and only one straight line, this is no

surprise. However, three points are not necessarily on one straight line and if, during

a geometrical exploration, three points ‘fall into’ a straight line, this is a surprise and

frequently we need to refer to this fact as a theorem to be proven. Any three points

not on a straight line lie on one circle. However, if four points lie on the same circle,

this is a surprise that should be formulated as a theorem. . . . Insofar as the number

of points on a straight line is larger than 3, so is the theorem the more surprising.

1 Maxim Bruckheimer was a mathematician who was one of the founders of the Open University

UK and Dean of its Faculty of Mathematics. He was Head of the Department of Science Teaching

at the Weizmann Institute of Science.
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Likewise, insofar as the number of points lying on one circle is larger than 4, so is

the theorem the more surprising. Thus, the statement that for any triangle there are

nine related points on the same circle . . . is very surprising. Moreover, in spite of

the magnitude of the surprise, its proof is elegant and easy.”

In this book Mordechai Ben-Ari offers a rich collection of mathematical surprises,

most of them less well known than the Feuerbach Circle and with sound reasons

for including them. First, in spite of being absent from textbooks, the mathematical

gems of this book are accessible with just a high school background (and patience,

and paper and pencil, since fun does not come for free). Second, when a mathemat-

ical result challenges what we take for granted, we are indeed surprised (Chaps. 1,

13). Similarly, we are surprised by: the cleverness of an argument (Chaps. 2, 3),

the justification of the possibility of a geometric construction by algebraic means

(Chap. 16), a proof relying on an apparently unrelated topic (Chaps. 4, 5), a strange

proof by induction (Chap. 6), new ways of looking at a well-known result (Chap. 7),

a seemingly minor theorem becoming the foundation of a whole field of mathe-

matics (Chap. 8), unexpected sources of inspiration (Chap. 9), rich formalizations

emerging from purely recreational activities such as origami (Chaps. 10–12). These

are all different reasons for the inclusion of the pleasant, beautiful and memorable

mathematical surprises in this lovely book.

So far I have addressed how the book relates to the first part of the definition of

surprise, the cognitive rational reasons for the unexpected. As to the second aspect,

the emotional aspect, this book is a vivid instantiation of what many mathematicians

claim regarding the primary reason for doing mathematics: it is fascinating! More-

over, they claim that mathematics stimulates both our intellectual curiosity and our

esthetic sensibilities, and that solving a problem or understanding a concept provides

a spiritual reward, which entices us to keep working on more problems and concepts.

It has been said that the function of a foreword tell readers why they should read

the book. I have tried to accomplish this, but I believe that the fuller answer will

come from you, the reader, after reading it and experiencing what the etymology of

the word surprise suggests: to be overtaken by it!

Abraham Arcavi



Preface

Godfried Toussaint’s article on the “collapsing compass” [50] made a profound

impression on me. It would never have occurred to me that the modern compass with

a friction joint is not the one used in Euclid’s day. In this book I present a selection

of mathematical results that are not only interesting, but that surprised me when I

first encountered them.

The mathematics required to read the book is secondary-school mathematics, but

that does not mean that the material is simple. Some of the proofs are quite long and

require that the reader be willing to persevere in studying the material. The reward

is understanding of some of the most beautiful results in mathematics. The book

is not a textbook, because the wide range of topics covered doesn’t fit neatly into

a syllabus. It is appropriate for enrichment activities for secondary-school students,

for college-level seminars and for mathematics teachers.

The chapters can be read independently. (An exception is that Chap. 10 on the

axioms of origami is a prerequisite for Chaps. 11, 12, the other chapters on origami.)

Notes relevant to all chapters are given below in list labeled Style.

What Is a Surprise?

There were three criteria for including a topic in the book:

• The theorem surprised me. Particularly surprising were the theorems on con-

structibility with a straightedge and compass. The extremely rich mathematics of

origami was almost shocking: when a mathematics teacher proposed a project on

origami, I initially turned her down because I doubted that there could be any

serious mathematics associated with the art form. Other topics were included

because, although I knew the results, their proofs were surprising in their ele-
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gance and accessibility, in particular, Gauss’s purely algebraic proof that a regular

heptadecagon can be constructed.

• The material does not appear in secondary-school and college textbooks, and I

found these theorem and proofs only in advanced textbooks and in the research

literature. There are Wikipedia articles on most of the topics, but you have to

know where to look and the articles are often outlines.

• The theorems and proofs are accessible with a good knowledge of secondary-

school mathematics.

Each chapter concludes with a paragraph What Is the Surprise? which explains my

choice of the topic.

An Overview of the Contents

Chapter 1 presents Euclid’s proof that any construction that is possible with a fixed

compass is possible with a collapsing compass. Many proofs have been given, but, as

Toussaint shows, most are incorrect because they depend on diagrams which do not

always correctly depict the geometry. To emphasize that one must not trust diagrams,

I present the famous alleged proof that every triangle is isoceles.

Over the centuries mathematicians unsuccessfully sought to trisect an arbitrary

angle (divide it into three equal parts) using only a straightedge and compass.

Underwood Dudley made a comprehensive study of trisectors who find incorrect

constructions; most constructions are approximations that are claimed to be accu-

rate. Chapter 2 starts by presenting two of these constructions and developing the

trigonometric formulas showing that they are only approximations. To show that

trisection using just a straightedge and compass is of no practical importance, trisec-

tions using more complex tools are presented: Archimedes’s neusis and Hippias’s

quadratrix. The chapter ends with a proof that it is impossible to trisect an arbitrary

angle with a straightedge and compass.

Squaring a circle (given a circle construct a square with the same area) cannot

be performed using a straightedge and compass, because the value of 𝜋 cannot be

constructed. Chapter 3 presents three elegant constructions of close approximations

to 𝜋, one by Kochański and two by Ramanujan. The chapter concludes by showing

that a quadratrix can be used to square a circle.

The four-color theorem states that it is possible to color any planar map with

four colors, such that no countries with a common boundary are colored with the

same color. The proof of this theorem is extremely complicated, but the proof of the

five-color theorem is elementary and elegant, as shown in Chapter 4. The chapter

also presents Percy Heawood’s demonstration that Alfred Kempe’s “proof” of the

four-color theorem is incorrect.
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How many guards must be employed by an art museum so that all the walls

are under constant observation by at least one guard? The proof in Chapter 5 is

quite clever, using graph coloring to solve what at first sight appears to be a purely

geometrical problem.

Chapter 6 presents some lesser-known results and their proofs by induction:

theorems on Fibonacci numbers and Fermat numbers, McCarthy’s 91 function, and

the Josephus problem.

Chapter 7 discusses Po-Shen Loh’s method of solving quadratic equations. The

method is a critical element of Gauss’s algebraic proof that a heptadecagon can be

constructed (Chapter 16). The chapter includes al-Khwarizmi’s geometric construc-

tion for finding roots of quadratic equations and a geometric construction used by

Cardano in the development of the formula for finding roots of cubic equations.

Ramsey theory is a topic in combinatorics that is an active area of research. It

looks for patterns among subsets of large sets. Chapter 8 presents simple examples of

Schur triples, Pythagorean triples, Ramsey numbers and van der Waerden’s problem.

The proof of the theorem on Pythagorean triples was accomplished recently with

the aid of a computer program based on mathematical logic. The chapter concludes

with a digression on the ancient Babylonians’ knowledge of Pythagorean triples.

C. Dudley Langford observed his son playing with colored blocks and noticed

that he had laid them out in an interesting sequence. Chapter 9 presents his theorem

on the conditions for such a sequence to be possible.

Chapter 10 contains the seven axioms of origami, together with the detailed

calculations of the analytic geometry of the axioms, and characterizations of the

folds as geometric loci.

Chapter 11 presents Eduard Lill’s method and the origami fold proposed by

by giving details here.

Chapter 12 shows that origami can perfom constructions not possible with a

straightedge and compass: trisecting an angle, squaring a circle and constructing a

nonagon (a regular polygon with nine sides).

Chapter 13 presents the theorem by Georg Mohr and Lorenzo Mascheroni that

any construction with a straightedge and compass can be performed using only a

compass.

The corresponding claim that a straightedge only is sufficient is incorrect, because

a straightedge cannot compute lengths that are square roots. Jean-Victor Poncelet

conjectured and Jakob Steiner proved that a straightedge is sufficient, provided that

there exists a single fixed circle somewhere in the plane (Chap. 14).

ent? That seems reasonable but it turns out not to be true, although it takes quite a

bit of algebra and geometry to find a non-congruent pair as shown in Chap. 15.

Margharita P. Beloch. I introduce Lill’s method as a magic trick so I won’t spoil it

If two triangles have the same perimeter and the same area must they be congru-
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Chapter 16 presents Gauss’s tour-de-force: a proof that a heptadecagon (a regular

polygon with seventeen sides) can be constructed using a straightedge and compass.

By a clever argument on the symmetry of the roots of polynomials, he obtained

a formula that uses only the four arithmetic operators and square roots. Gauss did

not give an explicit construction of a heptadecagon, so the elegant construction by

James Callagy is presented. The chapter concludes with constructions of a regular

pentagon based on Gauss’s method for the construction of a heptadecagon.

To keep the book as self-contained as possible, Appendix A collects proofs of

theorems of geometry and trigonometry that may not be familiar to the reader.

Style

• The reader is assumed to have a good knowledge of secondary-school mathemat-

ics, including:

– Algebra: polynomials and division of polynomials, monic polynomials—those

whose coefficient of the highest power is 1, quadratic equations, multiplication

of expressions with exponents 𝑎𝑚 · 𝑎𝑛 = 𝑎𝑚+𝑛.
– Euclidean geometry: congruent triangles △𝐴𝐵𝐶 � △𝐷𝐸𝐹 and the criteria for

congruence, similar triangles △𝐴𝐵𝐶 ∼ △𝐷𝐸𝐹 and the ratios of their sides,

circles and their inscribed and central angles.

– Analytic geometry: the cartesian plane, computing lengths and slopes of line

segments, the formula for a circle.

– Trigonometry: the functions sin, cos, tan and the conversions between them,

angles in the unit circle, the trigonometric functions of angles reflected around

an axis such as cos(180◦ − 𝜃) = − cos 𝜃.

• Statements to be proved are called theorems with no attempt to distinguish between

theorems, lemmas and corollaries.

• When a theorem follows a construction, the variables that appear in the the-

orem refer to labeled points, lines and angles in the figure accompanying the

construction.

• The full names of mathematicians have been given without biographical infor-

mation that can be found easily in Wikipedia.

• The book is written so that it is as self-contained as possible, but occasionally

the presentation depends on advanced mathematical concepts and theorems that

are given without proofs. In such cases, a summary of the material is presented

in boxes which may be skipped.

•

before reading the proof.

There are no exercises but the ambitious reader is invited to prove each theorem
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• Geometric constructions can be studied using software such as Geogebra.

• 𝐴𝐵 is used both for the name of a line segment and for the length of the segment.

• △𝐴𝐵𝐶 is used both for the name a triangle and for the area of the triangle.
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