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Preface

This book originated from graduate topics courses given by the first author at
Yale University and at the University of California, Berkeley. Since then, the
exposition has grown to include some recent research results in the field. Our book
is intended as a bridge between the traditional university graduate courses and
research-level mathematics in representation theory. It is therefore appropriate for
both an advanced graduate student entering the field and a research mathematician
wishing to diversify and expand their knowledge.

The unifying theme of this book is the structure and representation theory of
infinite-dimensional locally reductive Lie algebras and superalgebras. The first six
chapters are foundational, while each of the last four chapters represents a research
specialization in this large field, and for the most part can be studied independently.

Alocally reductive Lie algebra is a direct limit of finite-dimensional reductive Lie
algebras. This property is an essential difference from the well-studied Kac-Moody
algebras of finite rank (see [K5]), which have finite-dimensional Cartan subalgebras
but are not direct limits of finite-dimensional Lie algebras (unless they happen to
be finite dimensional). An important class of locally reductive Lie algebras, namely
root-reductive Lie algebras, can be considered as Kac—Moody algebras of infinite
rank; however, they do not come with a choice of simple roots. Moreover, the
representation theory of these Lie algebras exploits essentially the fact that they
admit triangular decompositions that are not of Kac—Moody type.

An outline of the book is as follows. Chapter 1 is a fast-paced review of the
structure theory of finite-dimensional Lie algebras, as needed for later chapters.
In Chap. 2, we discuss finite-dimensional Lie superalgebras with more attention
to detail for the unfamiliar reader. In Chap. 3, we introduce the central object
of this book: root-reductive Lie algebras, which are defined as direct limits of
finite-dimensional reductive Lie algebras with compatible root decompositions. In
Chap. 4, we consider two generalizations, namely classically semisimple infinite
rank Lie superalgebras and a class of direct limits of finite-dimensional reductive
Lie algebras in which the root decompositions are no longer compatible.
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Chapters 5 and 6 are devoted to the structure theory of the most basic root-
reductive Lie algebras: sl(c0), 0(c0), and sp(oco). More precisely, we describe
Cartan subalgebras, Borel subalgebras, and parabolic subalgebras in maximal
generality. A key notion for this is the notion of a generalized flag. This notion is
specific to the Lie algebras we study and is not borrowed from the theory of classical
finite-dimensional Lie algebras or Kac—-Moody algebras.

In Chap. 7, we turn our attention to the representation theory of the Lie algebras
5l(00), 0(00), and sp(00). The category of tensor modules is a very natural analog of
the category of finite-dimensional representations of a classical Lie algebra (with the
exception of spinor modules for 0(00)). In contrast with the latter category, which is
semisimple, tensor modules over sl(c0), 0(c0), and sp(co) form a non-semisimple
Koszul category. We also briefly discuss tensor modules for Lie superalgebras.

In Chap. 8, we present some general results on weight modules. Since these
results are not so widely known, even for finite-dimensional Lie algebras, we also
discuss this case. For s[(c0), 0(00), and sp(c0), we pay special attention to recent
results about simple bounded weight modules.

Chapter 9 is a brief review of generalized Harish-Chandra modules. These are
modules with a locally finite action of a fixed subalgebra which, in contrast with
the classical case considered by Harish-Chandra, does not have to be symmetric.
Our main tools here are the Fernando—Kac subalgebra of a representation and the
functor of cohomological induction, or the Zuckerman functor. Again, these results
are not so widely known for finite-dimensional Lie algebras, and so we present them
in some detail. In the case of sl(c0), 0(c0), and sp(00), the theory of generalized
Harish-Chandra modules has only made its first steps.

Finally, in Chap. 10, we turn to geometry. We take up a jewel in classical
representation theory, namely the Bott—Borel-Weil theorem, and discuss its known
analogs for the Lie supergroups and locally reductive ind-groups. For convenience,
we begin with presenting an explicit version of Demazure’s proof for the Lie group
GL(V).

The necessary background for Chaps. 1-6 is just a standard introductory course
on Lie algebras and their representations, while Chaps. 7 and 9 require some
homological algebra, and Chap. 10 assumes basic knowledge of algebraic geometry
and sheaf cohomology. Lie superalgebras appear only in Chaps. 2, 4, 7, and 10
and do not require prior knowledge beyond Lie algebras. Most chapters should
fill several hour-long sessions if one decided to give a course based on the book.
Exercises of various levels of difficulty are interlaced throughout the book to add
depth to reading comprehension.

We see our exposition as an invitation to a wide open research area in the form
of a guide, and our objective would be more than achieved if we have succeeded in
confronting the reader with a thought-provoking complex mixture of mathematical
ideas.
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