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Preface

In order to guide the reader into these notes, it seems appropriate to recall a
word from the title: ‘Geometry’. This emphasizes our viewpoint, and it indi-
cates that we will not deal with the important role of convex cones in such
fields as ordered vector spaces (e.g., [3]), measure theory (e.g., [25]), homoge-
neous or symmetric cones (e.g., [56]), or conic optimization. Rather, we con-
centrate on intuitive and elementary geometric appearances of convex cones,
for example in the investigation of polyhedra and in stochastic geometry.

Besides introducing the reader to the fundamental facts about convex
cones and their geometric functionals, this is a selection, illuminating dif-
ferent aspects of the geometry of convex cones. The principles guiding our
choices are twofold. Some older or newer results about convex cones or their
applications we found so remarkable that we think they should be pointed out,
preserved also outside their original sources, and presented to a wider public.
Other topics had the advantage that we were more familiar with them, after
studying them in detail, and they were included at appropriate places. Ac-
cordingly, much of the material is close to various research articles, and the
selection is rather subjective.

In the previous decade, some questions from applied mathematics, concern-
ing, for instance, the average case analysis of conic optimization problems, or
demixing by convex optimization under a probabilistic model, were treated
in a way leading to increased interest in non-trivial intersections of convex
cones. As an example, the following question is posed in [11, p. 227]: “What is
the probability that a randomly rotated convex cone shares a ray with a fixed
cone?” If ‘randomly’ is interpreted to imply uniform distribution, the prob-
ability in question can be calculated via the kinematic formula of conic (or,
equivalently, spherical) integral geometry. While the spherical, and thus the
conic, kinematic formula was already known, the new applications required
additional information about the functionals appearing in it, the conic intrin-
sic volumes. These can be considered as the conic counterparts to the intrinsic
volumes of convex bodies. The investigations of the new applications of the
conic intrinsic volumes, of which we mention [5, 8, 9, 11, 127, 128, 129], re-
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VI Preface

quired refined information, such as the explicit values of the conic intrinsic
volumes for special cones or estimates of their asymptotic behavior in high di-
mensions. The new interest in conic intrinsic volumes and the conic kinematic
formula was also a motivation for developing new and simplified approaches
to known results, as in [6] and [10].

Another incentive for collecting observations about convex cones came
from different publications on random cones, or on intersections of cones
with random subspaces. The early paper [50] treated random cones gener-
ated by tessellations of Rd by independent random hyperplanes through the
origin, or as the positive hull of independent random vectors, with quite gen-
eral assumptions on the distributions. The article [52] investigated, among
other things, random linear images of the nonnegative orthant in a higher-
dimensional space. On the other hand, beautiful probabilistic applications
were made of intersections of random linear subspaces with the cones of spe-
cial conical tessellations; see [113, 114]. More recently, various different aspects
of random cones were studied intensively, in [66, 67, 68, 69, 108, 109, 110, 111].
Reading such articles turned out to be a stimulus to have also a look at older
publications about convex cones.

The use of convex cones is classical, of course, in the geometry of polyhedra.
Normal cones and tangent cones are indispensable and familiar for anyone
working with polyhedra. But also some rarer appearances of cones in the
geometry of polyhedra deserve interest and should perhaps be more widely
known. When reading new and older articles on convex cones, the idea arose of
collecting various geometric facts on cones and of presenting them coherently.
The selection of topics was, as mentioned, a matter of personal interests,
though guided by the hope that greater diversity might help more readers to
find something of interest for them.

Chapter 1 lays the foundations, mainly on convex cones and polyhedra.
It collects some special results which are needed later. Particular emphasis is
on valuations and, connected to this, on identities for characteristic functions.
Polarity of convex cones is studied from various viewpoints.

Chapter 2 introduces the basic valuations that are used to measure poly-
hedral cones: the conic intrinsic volumes and the Grassmann angles (or conic
quermassintegrals). It establishes relations for them and between them, mak-
ing use of identities for characteristic functions and of a first integral-geometric
formula. Valuations on polyhedral cones are then used to establish Gauss–
Bonnet type theorems and tube formulas for compact general polyhedra.

A cone yields by intersection a subset of the unit sphere, and a subset
of the unit sphere uniquely determines a cone. Therefore, the geometry of
cones is equivalent to the geometry of subsets of the sphere. Treating cones in
Euclidean space, where we can use the linear structure, has several advantages
and makes the presentation easier. Sometimes, however, spherical geometry
is needed, or is more appropriate. Chapter 3 treats, therefore, relations to
spherical geometry. It provides some calculations for later applications, and
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also discusses some spherical inequalities, which can be re-interpreted in the
geometry of cones.

Chapter 4 deals with substantial metric properties of and manipulations
with convex cones. The ‘Master Steiner formula’ of McCoy and Tropp is
proved, in a generalized local form, involving the local versions of the conic
intrinsic volumes, the conic support measures. This is first done for polyhedral
cones and then extended, by continuity, to general convex cones. As an out-
come, the conic intrinsic volumes are thus defined as continuous functionals on
general closed convex cones. Then the kinematic formula of integral geometry
is proved for curvature measures of convex cones. Its global form provides the
probability of the event that a uniform random cone has a common ray with
a fixed cone. A concentration property of the conic intrinsic volumes around
the statistical dimension then leads to a threshold phenomenon. The chapter
deals briefly with inequalities for conic intrinsic volumes, and the weak conti-
nuity of the conic support measures is strengthened to Hölder continuity with
respect to suitable metrics.

Finitely many hyperplanes through the origin generate a tessellation of the
space into polyhedral convex cones. Chapter 5 treats these cones, in several
different ways. First, a formula is proved giving the sum of the kth conic
intrinsic volumes of the j-faces of such a tessellation. It reveals that this sum
depends only on the combinatorics of the central arrangement provided by the
hyperplanes. Special advantage is drawn from this fact in the determination
of an absorption probability concerning a certain random walk. The rest of
the chapter deals with the situation when the given hyperplanes are random,
with a distribution satisfying some mild assumptions. They then give rise to
different models of random cones, and for these, the expectations of various
geometric functionals are determined. Similar results are obtained for lower-
dimensional faces of the random tessellation. The final section is concerned
with probabilities of non-trivial intersections for isotropic random cones.

Chapter 6 continues the investigation of random cones, under various dif-
ferent aspects. A simple way to generate a random cone is to take the image of
a fixed cone under a random linear map. The first two sections deal with such
random cones. The behavior of random cones in high dimensions is the topic
of the next three sections. Random cones in halfspaces are briefly considered
in the last section.

The role that convex cones play in Chapter 7 is quite different. Here a
given convex cone serves as a cage for a convex hypersurface which is asymp-
totic to the cone. Examples appear in an old conjecture of Calabi, according
to which every complete hyperbolic affine hypersphere is asymptotic to the
boundary of a convex cone with apex at the center, and that every pointed
convex cone with interior points determines a one-parameter family of affine
hyperbolic hyperspheres which are asymptotic to the boundary of the cone.
With a distinctly different motivation, Khovanskĭı and Timorin [115] were led
to consider convex sets K contained in a fixed cone C such that C \ K is
bounded. More generally, we shall study C-coconvex sets, by which we under-
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stand sets of the form C \K, where C is a pointed closed convex cone with
interior points, K ⊆ C is a closed convex set, and C \ K has finite volume.
For such sets, we shall develop the first steps of a Brunn–Minkowski theory,
relating volume and a kind of addition.

Freiburg im Breisgau
Spring 2022
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