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Introduction

In probability courses, the teacher often begins with the words “Let ... be a prob-
ability space”, writing (€2, A, IP) in the upper left corner of the blackboard. Then
all constructions and reasoning can be conducted, using products to express inde-
pendence, projections for conditional expectations, convergences to establish the
laws of large numbers, etc. Probabilistic models are very rich and appear in many
fields with the widely used notions of the Markov chains, stationary processes and
diffusion processes. They now play a role in physics, economics and the natural and
environmental sciences.

In this treatise, we propose to enrich probability theory by adding to probability
measures operators that can accompany them in all constructions and deductions.
This is what the Dirichlet forms are capable of, which can be thought of as differential
calculus tools compatible with probability calculus.

In addition to the inherent interest of this investigation, which has already provided
several new results on important topics and still involves open questions, the resulting
world of enriched probabilities is exactly what is needed to conduct rigorous error
calculations in complex models. It is this interpretation that is chosen here as a
guiding thread.

k sk

Historically, the theory of the Dirichlet forms was born as an improvement of the
Hilbertian methods in potential theory, independently of any interpretation in terms
of error calculations, and it became a very active field of research in the 1980s when
it was realized that it easily extends to infinite-dimensional spaces. The interpretation
as an error calculation is much easier than one might imagine. It allows physicists,
engineers and modelers to assimilate these techniques and researchers to rely on a
solid intuition.

We present it in a progressive way, by relying on physical intuition and on common
uses in matters of errors more or less known to everyone. But this forces us to criticize
certain habits, in order to better understand the fertility of a rigorous theory.

The present edition is based on the French book [294] of the author. The work
proceeds very gradually, starting from concrete intuition and the culture concerning
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errors, then introducing the mathematical tools on which the theory is based
(semi-groups of operators, Dirichlet forms) and, thanks to them, developing error
calculations on complex models such as those involving the Brownian motion.

The exercises in the course of the text or at the end of the chapters are not riddles
but examples or in-depth studies that can be followed pen in hand and whose details
can be completed using the materials of the treatise.

I would like to pay a special tribute here to the mathematicians who enabled
me to succeed in writing these ideas, through their teaching. Here, I am thinking
in particular of Laurent Schwartz, Gustave Choquet and Jacques Neveu and the
dynamism that their research has generated. I also especially want to quote Paul-
André Meyer, Masatoshi Fukushima and Paul Malliavin and, finally, for intimate
and lasting collaborations, Francis Hirsch, Dominique Lépingle, Christophe Chorro
and Laurent Denis, in liaison with the potential theory group in France and the
community of practitioners of the Dirichlet forms, mainly in Germany and Japan.

Masatoshi Fukushima and Nicolas
Bouleau
Bielefeld, June 2005

Paris, France Nicolas Bouleau
Autumn 2020
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