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Preface

This volume contains the papers presented at the 16th International Conference on

Logic Programming and Non-monotonic Reasoning (LPNMR 2022) held during

September 5–9, 2022, in Genova Nervi, Italy.

LPNMR 2022 was the sixteenth in the series of international meetings on logic

programming and non-monotonic reasoning. LPNMR is a forum for exchanging ideas

on declarative logic programming, non-monotonic reasoning, and knowledge repre-

sentation. The aim of the conference is to facilitate interactions between researchers and

practitioners interested in the design and implementation of logic-based programming

languages and database systems, and those working in knowledge representation and

non-monotonic reasoning. LPNMR strives to encompass theoretical and experimental

studies that have led or will lead to advances in declarative programming and

knowledge representation, as well as their use in practical applications. The past edi-

tions of LPNMR were held in Washington, D.C., USA (1991), Lisbon, Portugal

(1993), Lexington, Kentucky, USA (1995), Dagstuhl, Germany (1997), El Paso, Texas,

USA (1999), Vienna, Austria (2001), Fort Lauderdale, Florida, USA (2004), Diamante,

Italy (2005), Tempe, Arizona, USA (2007), Potsdam, Germany (2009), Vancouver,

Canada (2011), Coruña, Spain (2013), Lexington, Kentucky, USA (2015), Espoo,

Finland (2017), and Philadelphia, USA (2019).

LPNMR 2022 received 57 submissions. Every submission was reviewed by at least

three Program Committee members. In total, 34 papers were accepted as regular long

papers, and five as short papers. Thus, 39 of the 57 papers were accepted. The scientific

program also included four invited talks by Nicola Leone, University of Calabria, Italy;

Sheila McIlraith, University of Toronto, Canada; Alessandra Russo, Imperial College

London, UK; and Stefan Woltran, TU Wien, Austria. Moreover, the program was

completed by three thematic invited tutorials by Stefania Costantini, University of

L’Aquila, Italy; Viviana Mascardi, University of Genoa, Italy; and Andreas Pieris,

University of Edinburgh, UK.

Springer sponsored the best technical paper award, while the Italian Association for

Logic Programming (GULP) sponsored for the best student paper award. These awards

were granted during the conference, followed by the selection of papers to have their

long versions invited for Rapid Publication Track to the Artificial Intelligence Journal

and to the journal of Theory and Practice of Logic Programming.

Three workshops were co-located with LPNMR 2022: the 4th International

Workshop on the Resurgence of Datalog in Academia and Industry (DATALOG 2.0),

the First International Workshop on HYbrid Models for Coupling Deductive and

Inductive ReAsoning (HYDRA 2022), and the 29th RCRA Workshop on Experimental

Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA

2022). A Doctoral Consortium (DC) was also part of the program. We thank the

workshop and DC organizers for their efforts.



We would like to express our warmest thanks and acknowledgments to those who

played an important role in the organization of LPNMR 2022: the Program Committee

and additional reviewers for their fair and thorough evaluations of submitted papers;

Viviana Mascardi for coordinating the workshops, Martin Gebser for organizing the

Doctoral Consortium, Jessica Zengari for advertising the conference and its workshops

through a number of channels, and the members of the Local Organizing Committee

(Angelo Ferrando, Matteo Cardellini, and Marco Mochi) and the other volunteer

members for working hard towards the success of the event.

The LPNMR 2022 conference received support from several organizations. We

gratefully acknowledge the DIBRIS Department of the University of Genoa, the

National Science Foundation, the Artificial Intelligence Journal, the Italian Association

for Logic Programming (GULP), Springer, the Association for Logic Programming,

Potassco Solutions, SurgiQ, DLVSystem, the Royal Society (supporting G. Gottlob by

Project RAISON DATA No. RP\R1\201074), and the Alan Turing Institute.

The conference was managed with the help of EasyChair.

September 2022 Georg Gottlob

Daniela Inclezan

Marco Maratea
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DLV Evolution from Datalog to Ontology

and Stream Reasoning

N. Leone, M. Alviano, F. Calimeri, C. Dodaro, G. Ianni, M. Manna,

E. Mastria, M.C. Morelli, F. Pacenza, S. Perri, K. Reale, F. Ricca,

G. Terracina, and J. Zangari

University of Calabria, Italy

{n.leone,m.alviano,f.calimeri,c.dodaro,g.ianni,

m.manna,e.mastria,m.c.morelli,f.pacenza,s.perri,

k.reale,f.ricca,g.terracina,j.zangari}@unical.it

Abstract. DLV has been one of the first solid and reliable integrated systems for

Answer Set Programming (ASP). DLV has significantly contributed both in

spreading the use of ASP and in fostering AI-based technological transfer

activities. This paper overviews the history and the recent evolution of the

system, which enable effective reasoning on ontologies and streams of data, and

the development of new applications.

Keywords: Answer set programming � Ontologies � Stream reasoning

The DLV System

DLV [27] has been one of the first solid and reliable integrated ASP systems. Its project

started a few years after the first definition of answer set semantics [21]. It has always

been, since the beginning, a suitable tool for applications in academic and real-world

scenarios, and significantly contributed both in spreading the use of ASP and in fos-

tering AI-based technological transfer activities [2, 19, 23]. After years of incremental

updates, a brand new version has been released, namely DLV-2 [4], a modern ASP

system featuring efficient evaluation techniques, proper development tools, versatility,

and interoperability. The project firstly focussed on developing separate solutions for

grounding and solving, releasing the I-DLV grounder [13] and the WASP solver [5];

later on, the two systems have been integrated in a monolithic, yet slender body. As for

the input language, DLV-2 was born fully compliant with the ASP-Core-2 standard

language; in addition, it offers additional constructs and tools for further enhancing

usability in real-world contexts [2, 23]. Historically, one of the most distinctive traits of

DLV is a full-fledged deductive-database system nature; nevertheless, it has been

steadily maintained and properly updated beyond this scope to handle an increasing

number of real-world and industrial applications. Actually, the development of

industrial applications of DLV started around 2010, with the first success story being

the development of a team-building system [23]. The number of DLV-based industrial

applications is constantly growing, among latest we mention: a system querying



DBpedia in natural language [17], a tool for rescheduling of nurse shifts in hospitals

[6], a decision support system for the diagnosis of headache disorders [16], and a

system for compliance-checking of electric panels [8]. Recently, DLV has been

empowered with tools and extensions to handle large scale reasoning with Datalog, run

on smart devices, and connect to big data systems [26, 28]. Nonetheless, some of the

most compelling challenges consist of empowering DLV with means for ontological

reasoning, and stream reasoning.

DLV for Ontological Reasoning

Since 2012, DLV has been actively supporting Ontology-Based Query Answering

(OBQA) [10], where a query q(x) is evaluated over a knowledge base consisting of an

extensional dataset D paired with an ontology R. In this context, Description Logics

(DLs) [1] and Datalog± [10] have been recognized as the two main formalisms to

specify ontologies. Unfortunately, in both cases, OBQA is generally undecidable [9].

To overcome this limitation, a number of classes of ontologies that guarantee the

decidability of query answering have been proposed with the aim of offering a good

balance between computational complexity and expressiveness. Since DLV natively

deals with plain Datalog, it can deal with Linear [11], Guarded [9] and Sticky [12],

which are Datalog rewritable under conjunctive queries, namely the ontology and the

query can be rewritten, independently from datasets, into an equivalent Datalog pro-

gram. Analogously, since DLV natively supports function symbols and value invention

in a controlled way, it directly supports Weakly�Acyclic, which admits canonical

models of finite size. In 2012, DLV started supporting Shy, which encompasses and

generalizes plain Datalog, Linear and DL-LiteR. In particular, DLV
9 [25]—the branch

of DLV supporting Shy—implements a fixed-point operator called parsimonious

chase and it is still considered a top system over these classes [7]. Subsequently, a new

branch of DLV, called OWL2DLV [3], has been developed with the aim of evaluating

SPARQL queries over very large OWL 2 knowledge bases. In particular, OWL2DLV

supports Horn-SHIQ and a large fragment of EL++. Moreover, OWL2DLV incor-

porates novel optimizations sensibly reducing memory consumption and a server-like

behavior to support multiple query scenarios. The high potential of OWL2DLV for

large-scale reasoning is outlined by the results of an experiment on data-intensive

benchmarks, and confirmed by the direct interest of a major international industrial

player, which has stimulated and partially supported this work. More recently, DaR-

Ling [20]—a Datalog rewriter for DLP ontologies under SPARQL queries—enriched

the DLV suite for OBQA to deal with the sameAs and to support concrete datatypes.

Finally, by exploiting a novel algorithm designed for the so called dyadic existential

rules [22], it is now possible to exploit DLV9 to deal also with Ward ontologies.

DLV for Stream Reasoning

DLV has been empowered with Stream Reasoning capabilities, which are nowadays a

key requirement for deploying effective applications in several real-world domains,

xiv N. Leone et al.



such as IoT, Smart Cities, Emergency Management. Stream Reasoning (SR) [18]

consists in the application of inference techniques to highly dynamic data streams, and

ASP is generally acknowledged as a particularly attractive basis for it. In this view, a

new incarnation of DLV has been released, namely I-DLV-sr [15], that features a

language ad-hoc conceived for easily modeling SR tasks along with robust perfor-

mance and high scalability. In fact, the input language consists in normal (i.e.,

non-disjunctive) stratified ASP programs featuring streaming literals in rule bodies,

over the operators: in, always, count, at least, and at most; recursion involving

streaming literals is allowed. The system takes advantage from Apache Flink for effi-

ciently processing data streams and from incremental evaluation techniques [14, 24] to

efficiently scale over real-world application domains. I-DLV-sr proved to be effectively

usable over real-world SR domains; nevertheless, being under steady development, it

has been significantly improving over time with respect of stability, performance and

language features; for instance, inspired by applications in the smart city domain, new

constructs have been recently introduced that further ease the modeling of reasoning

tasks and enable new functionalities, such as external sources of computation, trigger

rules, means for explicitly refer to time, generalized streaming atoms.

Conclusion

DLV is one of the first solid and reliable integrated ASP systems. We reported on the

development of DLV, mentioned some of the latest applications, and focused on some

recent enhancements for reasoning on ontologies and streams of data.
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Reward Machines: Formal Languages

and Automata for Reinforcement Learning

Sheila McIlraith

University of Toronto, Toronto, Canada

sheila@cs.toronto.edu

Reinforcement Learning (RL) is proving to be a powerful technique for building

sequential decision making systems in cases where the complexity of the underlying

environment is difficult to model. Two challenges that face RL are reward specification

and sample complexity. Specification of a reward function – a mapping from state to

numeric value – can be challenging, particularly when reward-worthy behaviour is

complex and temporally extended. Further, when reward is sparse, it can require

millions of exploratory episodes for an RL agent to converge to a reasonable quality

policy. In this talk I’ll show how formal languages and automata can be used to

represent complex non-Markovian reward functions. I’ll present the notion of a Reward

Machine, an automata-based structure that provides a normal form representation for

reward functions, exposing function structure in a manner that greatly expedites

learning. Finally, I’ll also show how these machines can be generated via symbolic

planning or learned from data, solving (deep) RL problems that otherwise could not be

solved.



Logic-Based Machine Learning: Recent

Advances and Their Role

in Neuro-Symbolic AI

Alessandra Russo, Mark Law, Daniel Cunnington, Daniel

Furelos-Blanco, and Krysia Broda

Department of Computing, Imperial College London

{a.russo, mark.law09, d.cunnington20,

d.furelos-blanco18, k.broda}@imperial.ac.uk

Abstract. Over the last two decades there has been a growing interest in

logic-based machine learning, where the goal is to learn a logic program, called

a hypothesis, that together with a given background knowledge explains a set of

examples. Although logic-based machine learning has traditionally addressed

the task of learning definite logic programs (with no negation), our logic-based

machine learning approaches have extended this field to a wider class of for-

malisms for knowledge representation, captured by the answer set programming

(ASP) semantics. The ASP formalism is truly declarative and due to its

non-monotonicity it is particularly well suited to commonsense reasoning. It

allows constructs such as choice rules, hard and weak constraints, and support

for default inference and default assumptions. Choice rules and weak constraints

are particularly useful for modelling human preferences, as the choice rules can

represent the choices available to the user, and the weak constraints can specify

which choices a human prefers. In the recent years we have made fundamental

contributions to the field of logic-based machine learning by extending it to the

learning of the full class of ASP programs and the first part of this talk provides

an introduction to these results and to the general field of learning under the

answer set semantics, referred here as learning from answer sets (LAS).

To be applicable to real-world problems, LAS has to be tolerant to noise in

the data, scalable over large search spaces, amenable to user-defined

domain-specific optimisation criteria and capable of learning interpretable

knowledge from structured and unstructured data. The second part of this talk

shows how these problems are addressed by our recently proposed FastLAS

approach for learning Answer Set Programs, which is targeted at solving

restricted versions of observational and non-observational predicate learning

from answer sets tasks. The advanced features of our family of LAS systems

have made it possible to solve a variety of real-world problems in a manner that

is data efficient, scalable and robust to noise. LAS can be combined with sta-

tistical learning methods to realise neuro-symbolic solutions that perform both

fast, low-level prediction from unstructured data, and high-level logic-based

learning of interpretable knowledge. The talk concludes with presenting two

such neuro-symbolic solutions for respectively solving image classification

problems in the presence of distribution shifts, and discovering sub-goal

structures for reinforcement learning agents.



Non-monotonic Logic-Based Machine Learning

Over the last decade we have witnessed a growing interest in Machine Learning. In

recent years Deep Learning has been demonstrated to achieve high-levels of accuracy

in data analytics, signal and information processing tasks, bringing transformative

impact in domains such as facial, image, speech recognition, and natural language

processing. They have best performance on computational tasks that involve large

quantities of data and for which the labelling process and feature extraction would be

difficult to handle. However, they suffer from two main drawbacks, which are crucial in

the context of cognitive computing. They are not capable of supporting AI solutions

that are good at more than one task. They are very effective when applied to single

specific tasks, but applying the same technology from one task to another within the

same class of problems would often require retraining, causing the system to possibly

forget how to solve a previously learned task. Secondly, and most importantly, they are

not transparent. Operating primarily as black boxes, deep learning approaches are not

amenable to human inspection and human feedbacks, and the learned models are not

explainable, leaving the humans agnostic of the cognitive and learning process per-

formed by the system. This lack of transparency hinders human comprehension,

auditing of the learned outcomes, and human active engagement into the learning and

reasoning processes performed by the AI systems. This has become an increasingly

important issue in view of the recent General Data Protection Regulation (GDPR)

which requires actions taken as a result of a prediction from a learned model to be

justified.

There has been a growing interest in logic-based machine learning approaches

whose learned models are explainable and human interpretable. The goal of these

approaches is the automated acquisition of knowledge (expressed as a logic program)

from given (labelled) examples and existing background knowledge. One of the main

advantage of these machine learning approaches is that the learned knowledge can be

easily expressed into plain English and explained to a human user, so facilitating a

closer interaction between humans and the machine. Logic-based machine learning has

traditionally addressed the task of learning knowledge expressible in a very limited

form [14] (definite clauses). Our logic-based machine learning systems [1, 2, 7] have

extended this field to a wider class of formalisms for knowledge representation, cap-

tured by the answer set programming (ASP) semantics [4]. This ASP formalism is truly

declarative, and due to its non-monotonicity it is particularly well suited to common-

sense reasoning It allows constructs such as choice rules, hard and weak constraints,

and support for default inference and default assumptions. Choice rules and weak

constraints are particularly useful for modelling human preferences, as the choice rules

can represent the choices available to the user, and the weak constraints can specify

which choices a human prefers. In the recent years we have made fundamental con-

tributions to the field of logic-based machine learning by extending it to the learning

of the full class of ASP programs [5]. Early approaches to learning ASP programs can

mostly be divided into two categories: brave learners aim to learn a program such that

at least one answer set covers the examples; on the other hand, cautious learners aim to

find a program which covers the examples in all answer sets. Most of the early
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ASP-based ILP systems were brave. In [7], we showed that some ASP programs cannot

be learned using either the brave or the cautious settings, and in fact a combination of

both brave and cautious semantics is needed. This has the original motivation for the

Learning from Answer Sets family of frameworks [8–11] which we have developed

since then and have been shown to be able to learn any ASP program.

One of the main features of our LAS framework is the ability to support

non-monotonic learning. Non-monotonicity permits incremental learning, allowing the

machine to periodically revise rules and knowledge learnt, as examples of user beha-

viours are continuously observed. The non-monotonicity property is particularly rele-

vant in pervasive computing, where systems are expected to autonomously adapt to

changes in user context and behaviour, whilst operating seamlessly with minimal user

intervention. We have used our non-monotonic LAS systems in mobile privacy [13],

where devices learn and revise user’s models from sensory input and user actions (e.g.

user’s actions on mobile devices), and in security [3], where anomaly detection policies

are learned from historical data using domain-specific function for scoring candidate

rules to guide the learning process towards the best policies. In both applications, the

declarative representation of the learned programs make them explainable to human

users, and providing way for users to understand and amend what has been learnt.

Often, many alternative solutions can be learned to explain given set of examples,

and most logic-based learning systems employ a bias towards shorter solutions, based

on Occam’s razor (the solution with the fewest assumptions is the most likely).

Choosing the shortest hypothesis may lead to very general hypotheses being learned

from relatively few examples. While this can be a huge advantage of logic-based

machine learning over other machine learning approaches that need larger quantities of

data, learning such general rules without sufficient quantities of data to justify them

may not be desirable in every application domain. For example, in access control,

wrongly allowing access to a resource may be far more dangerous than wrongly

denying access. So, learning a more general hypothesis, representing a more permissive

policy, would be more dangerous than a specific hypothesis, representing a more

conservative policy. Equally, for access control where the need for resources is time

critical, wrongly denying access could be more dangerous than wrongly allowing

access. When learning such policies, and choosing between alternative hypotheses, it

would be useful to specify whether the search should be biased towards more or less

general hypotheses. In [6], we have proposed a logic-based machine learning system,

called FastLAS, targeted at solving a restricted version of the context-dependent

learning from answer sets tasks that require only observational predicate learning. This

system has two main advantages: it allows for domain-specific scoring function for

hypotheses which generalises the standard Occam’s razor approach, where hypotheses

with the lowest number of literals are normally assumed to be preferred; and it is

specifically designed to be scalable with respect to the hypothesis space. Its restriction

to observational predicate learning has been lifted in [12], where the FastNonOPL

system is proposed to solve non observational predicate learning from answer set tasks,

whilst preserving scalability is a challenging open problem.
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Abstract. Abstract argumentation frameworks are among the best researched

formalisms in the last two decades. They can be used to model discourses,

provide a common ground for several nonmonotonic logics, and are employed

to define semantics for more advanced argumentation formalisms. In the latter

two domains, it is not the abstract argument’s name, but the claim the argument

represents, which should be in the focus of reasoning tasks. In this context, the

fact that different arguments can represent the same claim leads to certain

intricacies when it comes to the actual definition of semantics and in terms of

computational aspects. In this talk, we give an overview on recent results in this

direction. Those include the relation between argumentation and logic pro-

gramming semantics, as well as a complexity analysis of acceptance problems in

terms of claims and the effect of preferences in this setting.

Keywords: Argumentation Semantics � Claim-based Reasoning � Computational

Complexity � Preferences

A Claim-Based Perspective on Logic Programming

Computational argumentation is a vibrant research area in AI [1, 2]; it is concerned

with conflict resolution of inconsistent information and the justification of defeasible

statements (claims) through logical or evidence-based reasoning. The abstract repre-

sentation of conflicting information, significantly shaped by Dung [6], is among the

most prominent approaches in this context. In his abstract argumentation frameworks

(AFs), each argument is treated as an abstract entity while an attack relation encodes

(asymmetric) conflicts between them. Acceptance of arguments is evaluated with

respect to argumentation semantics. In recent years, the acceptance of claims received

increasing attention [3, 9]. Claim-augmented argumentation frameworks (CAFs) [9]

extend Dung’s model by assigning each argument its own claim, allowing for sys-

tematic study of structural and relational properties of claim acceptance. Formally, a

CAF is a triple ðA;R; clÞ consisting of a set of arguments A, a set of directed attacks

1 Supported by WWTF through project ICT19-065, and FWF through projects P30168

and W1255-N23.



R�A� A between arguments, and a claim-function cl assigning a claim to each

argument. They can be represented as directed labeled graphs (cf. Example 1).

Argumentation and logic programming are closely related [5, 6, 13]. The corre-

spondence of stable model semantics with stable semantics in AFs is probably the most

fundamental example [6], but also other logic programming semantics admit equivalent

argumentation semantics [13]. With CAFs, the correspondence is particularly close:

when identifying atoms in a given logic program (LP) P with claims of arguments

constructed from rules in P we obtain a natural correspondence between LP semantics

and AF semantics in terms of claims.

Example 1 (adapted from [5]). Consider the following logic program P:

When we interpret each rule ri as an argument xi with claim headðriÞ and consider

attacks between arguments xi and xj if the claim of xi appears negated in the body of the

rule rj corresponding to xj, we obtain the following CAF F :

x0

ax2b

x3c

x1d

x5

e

x4

e

P returns ;, fag, and fd; bg under p-stable model semantics (where one allows for

undecided atoms). The complete2 argument-sets of F in turn are ;, fx0g, and fx1; x2g.
Inspecting the claims of these sets, F thus yields the same outcome as P. This is not a

coincidence: as shown in [5], complete semantics correspond to p-stable model

semantics when extracting the claims of the arguments. �
Hence the representation as CAF establishes the connection between the two

paradigms without detours, i.e., no additional steps or mappings are needed. Moreover,

with CAFs, it is possible to capture semantics that make direct use of the claims. This

advantage becomes apparent when we consider semantics that take false atoms into

account: L-stable semantics [10] minimizes the set of undecided atoms in a p-stable

model. Semi-stable semantics can be seen as their AF counter-part: here, the set of

arguments which are neither accepted (i.e., contained in a complete extension) nor

attacked is minimized. However, when evaluating our LP P under L-stable model

semantics and its corresponding CAF F under semi-stable semantics we observe an

undesired discrepancy.

Example 2 (Example 1 ctd.). The L-stable models of P are fag (atoms b; c; d are false)

and fd; bg (here, a; c are false). We obtain the single semi-stable extension fx0g in F
(x0 attacks all remaining arguments except x4, minimizing undecided arguments),

hence fag is the only semi-stable claim-set of F . �

2 A set of arguments E is complete if it is conflict-free, defends itself, and contains all arguments it
defends (E defends a if each attacker b of a is counter-attacked).
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With CAFs, it is possible to define argumentation semantics such that they mimic

the behavior of performing maximization on conclusion-level and minimize the set of

undecided claims instead. For this, it is crucial to consider the defeated claims of an

extension: intuitively, a claim is defeated iff all arguments carrying this claim are

attacked. We illustrate the idea on our example.

Example 3 (Example 1 ctd.). We model L-stable semantics by maximizing accepted

and defeated claims of complete sets: The set fx0g defeats claims b; c; d; claim e is not

defeated because x0 does not attack all occurrences of e. The set of accepted and

defeated claims w.r.t. the extension fx0g (the claim-range of fx0g) is thus given by

fa; b; c; dg. Note that we obtain the same claim-range for the complete set fx1; x2g,
which provides us with two semi-stable extensions under this evaluation method. Now,

F yields the same outcome as P when evaluated under L-stable semantics. �

Advances in Claim-Based Reasoning in a Nutshell

Claim-Based Semantics. We sketched two different evaluation methods for CAFs,

taking into account different aspects of claim-based reasoning: In the first method,

semantics are evaluated with respect to the underlying AF and the claims are extracted

in the final step of the evaluation. We call this variant inherited semantics [9]. In the

second method, we considered claim-defeat (as illustrated in Example 3) and per-

formed maximization on claim-level. We call this variant claim-level semantics [8, 12].

Both variants capture claim-based reasoning in different aspects. While inherited

semantics are well-suited to investigate justification in structured argumentation,

claim-level semantics capture reasoning in conclusion-oriented formalisms. In the talk,

we will review a detailed comparison between these two variants, cf. [8].

Well-formed CAFs. Observe that in CAFs obtained from LPs (cf. Example 5), any two

arguments with the same claim attack the same arguments, i.e., if x and y have the same

claim then x attacks the argument z iff y attacks z. This behavior is common to many

instantiations of CAFs, and gives rise to the important class of well-formed CAFs.

Formally, a CAF ðA;R; clÞ is well-formed iff for all x; y 2 A with clðxÞ ¼ clðyÞ we

have fz jðx; zÞ 2 Rg ¼ fz jðy; zÞ 2 Rg. As mentioned, well-formed CAFs capture

LP-instantiations. Moreover, well-formed CAFs have benefits over general CAFs with

regards to semantical properties and computational complexity. We furthermore note

that the inherited and claim-based versions of prominent (e.g., stable) semantics

coincide on well-formed CAFs [8].

Preferences in Claim-Based Reasoning. While well-formed CAFs are a natural

sub-class of CAFs, they fail to account for a notion common to many formalisms

instantiated into AFs, namely preferences. Specifically, in the course of the instantia-

tion process, it often occurs that one argument x is considered stronger than (or:

preferred to) another argument y (x � y). If there is an attack violating this preference,

i.e., ðy; xÞ 2 R, then this is called a critical attack. This notion of preference in terms of

argument strength leads to a generalization of well-formed CAFs to so-called

Preference-based CAFs (PCAFs) [4]. Formally, a PCAF is given as ðA;R; cl;�Þ where
ðA;R; clÞ is a well-formed CAF and � is an asymmetric preference relation over A.
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Preferences are then resolved via so-called preference-reductions which transform

PCAFs into CAFs. The literature [11] describes several such reductions for AFs: a

prominent method is to delete critical attacks; further approaches revert critical attacks

or delete them only if there is also an attack from the stronger to the weaker argument,

Finally a combination of the latter two is often considered. These four reductions give

rise to four new CAF-classes being strictly located between well-formed CAFs and

general CAFs. Also, only some of these classes preserve certain benefits of

well-formed CAFs while others exhibit the same behavior as general CAFs.

Complexity Results. In the talk, we finally review complexity results obtained for

CAFs and PCAFs [4, 7, 9]. It has been shown that the verification problem (testing

whether a given claim set is an extension for a given CAF/PCAF) can have higher

complexity for CAFs than for AFs, while this gap does not show up for most semantics

when restricting ourselves to well-formed CAFs. Interestingly, for PCAFs this effect

depends on the chosen reduction.
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