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Foreword

When I first got into information security in the early 1970s, the little research
that existed was focused on mechanisms for preventing attacks. The goal was
airtight security, and much of the research by the end of decade and into the
next focused on building systems that were provably secure. Although there
was widespread recognition that insiders with legitimate access could always
exploit their privileges to cause harm, the prevailing sentiment was that we
could at least design systems that were not inherently faulty and vulnerable
to trivial attacks by outsiders.

We were wrong. This became rapidly apparent to me as I witnessed the
rapid evolution of information technology relative to progress in information
security. The quest to design the perfect system could not keep up with market
demands and developments in personal computers and computer networks. A
few Herculean efforts in industry did in fact produce highly secure systems,
but potential customers paid more attention to applications, performance, and
price. They bought systems that were rich in functionality, but riddled with
holes. The security on the Internet was aptly compared to “Swiss cheese.”

Today, it is widely recognized that our computers and networks are unlikely
to ever be capable of preventing all attacks. They are just way too complex.
Thousands of new vulnerabilities are reported to the Computer Emergency
Response Team Coordination Center (CERT/CC) annually. We might signifi-
cantly reduce the security flaws through good software development practices,
but we cannot expect foolproof security as technology continues to advance
at breakneck speeds. Further, the problems do not reside solely with the ven-
dors; networks must also be properly configured and managed. This can be
a daunting task given the vast and growing number of products that can be
networked together and interact in unpredictable ways.

In the middle 1980s, a small group of us at SRI International began inves-
tigating an alternative approach to security. Recognizing the limitations of a
strategy based solely on prevention, we began to design a system that could
detect intrusions and insider abuse in real time as they occurred. Our research
and that of others led to the development of intrusion detection systems. Also
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in the 1980s, computer viruses and worms emerged as a threat, leading to
software tools for detecting their presence. These two types of detection tech-
nologies have been largely separate but complementary. Intrusion detection
systems focus on detecting malicious computer and network activity, while
antiviral tools focus on detecting malicious code in files and messages.

To succeed, a detection system must know what to look for. This has been
easier to achieve with viral detection than intrusion detection. Most antiviral
tools work off a list containing the “signatures” of known viruses, worms, and
Trojan horses. If any of the signatures are detected during a scan, the file
or message is flagged. The main limitation of these tools is that they cannot
detect new forms of malicious code that do match the existing signatures.
Vendors mitigate the exposure of their customers by frequently updating and
distributing their signature files, but there remains a period of vulnerability
that has yet to be closed.

With intrusion detection, it is more difficult to know what to look for,
as unauthorized activity on a system can take so many forms and even re-
semble legitimate activity. In an attempt to not miss something that is po-
tentially malicious, many of the existing systems sound far too many false or
inconsequential alarms (often thousands per day), substantially reducing their
effectiveness. Without a means of breaking through the false-alarm barrier,
intrusion detection will fail to meet its promise.

This brings me to this book. The authors have made significant progress in
our ability to distinguish malicious activity and code from that which is not.
This progress has come from bringing machine learning and data mining to
the detection task. These technologies offer a way past the false-alarm barrier
and towards more effective detection systems.

The papers in this book address one of the most exciting areas of research
in information security today. They make an important contribution to that
area and will help pave the way towards more secure systems.

Monterey, CA Dorothy E. Denning
January 2005



Preface

In the mid-1990s, when I was a graduate student studying machine learning,
someone broke into a dean’s computer account and behaved in a way that most
deans never would: There was heavy use of system resources very early in the
morning. I wondered why there was not some process monitoring everyone’s
activity and detecting abnormal behavior. At least in the case of the dean, it
should not have been difficult to detect that the person using the account was
probably not the dean.

About the same time, I taught a class on artificial intelligence at George-
town University. At that time, Dorothy Denning was the chairperson. I knew
she worked in security, but I knew little about the field and her research; after
all, I was studying rule learning. When I told her about my idea of learning
profiles of user behavior, she remarked, “Oh, there’s been lots of work on
that.” I made copies of the papers she gave me, and I started reading.

In the meantime, I managed to convince my lab’s system administrator to
let me use some of our audit data for machine learning experiments. It was
not a lot of data—about three weeks of activity for seven users—but it was
enough for a section in my dissertation, which was not about machine learning
approaches to computer security.

After graduating, I thought little about the application of machine learning
to computer security until recently, when Jeremy Kolter and I began inves-
tigating approaches for detecting malicious executables. This time, I started
with the literature review, and I was amazed at how widespread the research
had become. (Of course, the Internet today is not the same as it was in 1994.)

Ten years ago, it seemed that most of the articles were in computer se-
curity journals and proceedings and few were in the proceedings of artificial
intelligence and machine learning conferences. Today, there are many publi-
cations in all of these forums, and we now have the new field of data mining.
Many interesting papers appear in its literature. There are also publications
in literatures on statistics, industrial engineering, and information systems.
This description does not take into account recent work on fraud detection,
which is relevant to applications in computer security, even though it does
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not involve network traffic or audit data. Indeed, many issues are common to
both endeavors.

Perhaps I am a little better at doing literature searches, but in retrospect,
this “discovery” should not have been too surprising since there is overlap
among these areas and disciplines. However, what I needed and wanted was a
book that brought this work together. In addition to research contributions,
I also wanted chapters that described relevant concepts of computer security.
Ideally, it would be part textbook, part monograph, and part special issue of
a journal.

At the time, Jeremy Kolter and I were preparing a paper for the Third
IEEE International Conference on Data Mining. Xindong Wu of the University
of Vermont was the program co-chair, and during a visit to his Web site, I
noticed that he was an editor of Springer’s series on Advanced Information
and Knowledge Processing. After a few e-mails and words of encouragement,
I submitted a proposal for this book. After peer review, Springer accepted it.

Intended Audience

The intended audience for this book consists of three groups. The first group
consists of researchers and practitioners working in this interesting intersection
of machine learning, data mining, and computer security. People in this group
will undoubtedly recognize the contributors and the connection of the chapters
to their past work.

The second group consists of people who know about one field, but would
like to learn more about the other. It is for people who know about machine
learning and data mining, but would like to learn more about computer secu-
rity. These people have a dual in computer security, and so the book is also
for people who know this field, but would like to learn more about machine
learning and data mining.

Finally, I hope graduate students, who constitute the third group, will
find this volume attractive, whether they are studying machine learning, data
mining, statistics, or information assurance. I would be delighted if a professor
used this book for a graduate seminar on machine learning and data mining
approaches to computer security.
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