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Preface

This book has been developed from my dissertation, which I wrote at the
University of Augsburg from 2002 to 2005. I first became acquainted with
several definitions of attractor for nonautonomous dynamical systems when I
was preparing my diploma thesis, and the question arose whether a nonau-
tonomous bifurcation theory can be founded based on suitable notions of
nonautonomous attractor (and repeller).

At the beginning of my time as a Ph. D. student, I developed local no-
tions of attractor and repeller for several time domains (the past, the future,
the whole time and finite time intervals), and I distinguished between two
bifurcation scenarios. The first scenario describes the loss of attractivity
and repulsivity, and the second one deals with transitions of attractors and
repellers. All definitions are introduced in Chapter 2 of this book. As a test
for the new definitions, I then considered asymptotically autonomous differen-
tial equations; these are systems whose behavior becomes autonomous when
time tends to the past or the future. I found conditions for the occurrence of a
nonautonomous bifurcation in case the underlying autonomous system admits
a bifurcation (see Chapter 7). Moreover, I developed nonautonomous counter-
parts for classical one-dimensional bifurcation patterns (see Chapter 6).

The remaining part of my work was focussed on the study of qualitative
properties of the local notions of attractivity and repulsivity. I showed that
these are suitable to describe the global asymptotic behavior via Morse
decompositions (see Chapter 3), and for linear systems, I introduced notions
of dichotomy and dichotomy spectra for the four different time domains (see
Chapter 4). Furthermore, I constructed invariant manifolds of nonlinear sys-
tems for the different time domains in order to obtain attractivity and repul-
sivity from the linearization (see Chapter 5).

Writing this book would not have been possible without the aid of many
people to whom I would like to express my gratitude. First of all, I would like
to thank my supervisor Professor Bernd Aulbach, who unfortunately suddenly
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and unexpectedly passed away on January 14, 2005, at the age of 57 years.
I am grateful for his longstanding support while writing my diploma thesis and
dissertation. I benefited from his great ability to explain complicated facts very
clearly and lucidly, and I am thankful to him for many fruitful discussions.
Moreover, I am greatly indebted to Professor Fritz Colonius who became
my advisor after the death of Professor Aulbach. He was very interested in
the details of my work, and I was very encouraged by his positive attitude
to my ideas and suggestions. Furthermore, I am grateful to Professor Lars
Grine for his interest in my work and for being a referee for my dissertation.
I would also like to thank Dr. Stefan Siegmund for many useful discussions
and remarks, especially in the first year of my work. Special thanks go to
my friends and colleagues Dr. Christian Potzsche and Dr. Ludwig Neidhart
for reading the manuscript and making useful comments. I also thank the
Deutsche Forschungsgemeinschaft for the financial support I received from
them, when I was a member of the Graduiertenkolleg “Nichtlineare Probleme
in Analysis, Geometrie und Physik” in the department for mathematics and
physics at the University of Augsburg. Finally, I would like to thank my
parents for making it possible for me to study mathematics and for their
support during all these years.

Augsburg, February 2007 Martin Rasmussen
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