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PREFACE 

A philosopher once said that mathematics is nothing but 

training; however, engineers have their own motivation to learn 

mathematics. Because they deal with complicated practical problems 
and are eager to find useful methods, engineers often face the task 

of constructing reasonable models, for which familiarity with 
analytical solutions of simple cases can throw light on the 
understanding of the more complex situations. 

The present text is a revised version of the author's lecture 

notes in a graduate course of applied mathematics, developed at the 
Illinois Institute of Technology in the early fifties and expanded 

at Purdue University. The text is based on the idea that 
engineering students may find it more interesting to learn 

mathematics through the introduction of concrete examples. In 
carrying out this task, 1 have tried to organize the material in a 

logical order that transmits the package of mathematical knowledge 
and methods to the students in an efficient manner. Many problems, 
utilizing the existing laws of science, can be formulated in 

mathematical form; often the formulation leads to boundary-value 

problems in linear partial differential equations, for which 
solutions are then required. Thus, various standard methods of 

solution are naturally introduced, employing the techniques of 

Fourier series, orthogonal functions, Lapl ace and other transforms, 
Green's functions, Riemann's conformal mapping, etc. The only pre

vi ous knowl edge assumed as prerequi sites i s advanced calcul us and 
elementary ordinary differential equations. 

ln order to enhance the students' enthusiasm for learning the 

material, exercises are chosen carefully. This enables the students 
not only to find their own way to solutions, but also strengthens 
their practical grasp of the subject under discussion in the text. 
Supplementary knowledge necessary for some treatments for 
instance, the elementary theory of analytic functions -- is included 
in an appendix. Cauchy's residue theorem is particularly important 
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in the evaluation of definite integrals of the type that appear by 

employing operational methods. 

The present text is not intended as a complete treatment of 

boundary-value problems in linear partial differential equations. A 

conscientious reader is encouraged to consult the additional 

material listed in the references. 

Finally, the author wishes to thank Mrs. Terri Moore for her 

painstaking fine work in typing the notes in the present form. 
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