An Introduction to Derating Systems

Revised First Edition Harvey M. Deitel

Including Case Studies in:

UNIX VAX CP/M® MVS MVS

With Concurrent Programming in Ada®

An Introduction to Operating Systems

Revised First Edition

BIBLIOTHEQUE DU CERIST

An Introduction to Operating Systems

Revised First Edition

HARVEY M. DEITEL

Boston College

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn • Sydney Singapore • Tokyo • Madrid • Bogota • Santiago • San Juan

WORLD STUDENT SERIES

Sponsoring Editor: William B. Gruener Production Editor: William J. Yskamp

Text Designer: Herb Caswell Illustrator: ANCO/Boston Cover Designer: Gary Fujiwara Art Coordinator: Susanah H. Michener

Production Manager: Susan Zorn Production Coordinator: Helen M. Wythe

The text of this book was composed in Times Roman by International Computaprint Corporation

CP/M[®], MP/M[®] and CP/NET[®] are registered trademarks of Digital Research, Incorporated UNIX[™] is a trademark of Bell Laboratories, Incorporated XENIX[™] is a trademark of Microsoft Corporation VAX[™] is a trademark of Digital Equipment Corporation MVS[™] and VM[™] are trademarks of International Business Machines Corporation Ada[®] is a registered trademark of the United States Government, Ada Joint Program Office.

Copyright © 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-14502-2 EFGHIJ-HA-89876 To my wife, Barbara, and to my children, Paul and Abbey: You are the joys of my life.

BIBLIOTHEQUE DU CERIST

Preface

This text is intended primarily for the one-semester operating systems course that universities offer to juniors, seniors, and first-year graduate students in computer science. It contains sufficient material to be useful as the main text for courses CS6 and CS10 in ACM Curriculum 78. Chapter 15, Analytic Modeling, is heavily mathematical; this chapter should be included by instructors in "hard-core" computer science schools, but it may be omitted without loss of continuity in less formal programs.

The text contains approximately 300 charts, diagrams, and illustrations, 504 exercises, 22 chapters, and five detailed case studies. Each chapter lists extensive literature—577 books and papers are referenced. Over 1200 terms are highlighted in the end-of-chapter terminology sections.

Five detailed case studies are included on operating systems that will have great importance in the 1980s, namely, the UNIX system, VAX/VMS, CP/M, MVS, and VM. Each of these systems has a certain "flavor" that I have worked hard to convey. Each of them is intended for a different portion of the operating systems marketplace.

Eight major parts are included; each part contains several related chapters. The text is handsomely illustrated (thanks to the skills of Sue Michener of Addison-Wesley). Each chapter begins with an outline so that the reader may approach the material in "top-down" fashion. One or more quotes are used in introducing each chapter—some are humorous; some are thought-provoking; all are intended to humanize the text and add a touch of the philosophical.

Significant terms, major concepts, and important statements are italicized. Each chapter includes a summary of important concepts and ideas for review. Terminology sections are included; key terms are presented alphabetically. Each chapter includes many exercises varying in difficulty from simple review of the material to

complex reasoning from basic principles. Literature sections are localized; each chapter ends with a listing of relevant texts and papers. An Author Index at the end of the text lists all of the authors and co-authors mentioned in the text; an extensive conventional Subject Index provides rapid access to virtually any portion of the text by keyword.

Part One introduces the notion of operating systems, presents a history of operating systems, and discusses hardware, software, and firmware. Chapter 2 includes a case study on microprogramming; this is especially important to the operating systems student — in future designs much (and in some cases all) of the operating system will migrate into microcode. Portions of Chapter 1 are based upon "A History of Operating Systems" by N. Weizer, *Datamation*, January 1981. This material is reprinted with permission of *Datamation*^{*} magazine, [•] Copyright by Technical Publishing Company, A Dun & Bradstreet Company, 1981, all rights reserved.

Part Two presents the notions of process, process state transitions, interrupts, context switching, operating systems structure, asynchronism, mutual exclusion, monitors, and deadlock. Chapter 3 introduces various process concepts and discusses the interrupt structure of the large-scale IBM processors; this material is critical to the discussions of the MVS and VM operating systems in the case studies later in the text. Chapter 4 presents the notion of asynchronism. The problems encountered in concurrent access to shared resources are discussed, and various mutual exclusion techniques, both hardware- and software-oriented, are presented for dealing with these problems. Chapter 5 discusses monitors and how they may be used to solve certain classical problems in concurrency; monitor implementations of the Ring Buffer as well as Readers and Writers are presented. The chapter continues with an introduction to concurrent programming in Ada, the emerging language whose development has been sponsored by the United States government.

Many of the Ada program segments presented are based on examples in *Preliminary Ada Reference Manual*, SIGPLAN NOTICES, Vol. 14, No. 6, June 1979, Part A, and *Rationale for the Design of the Ada Programming Language*, by J. D. Ichbiah, J. C. Heliard, O. Roubine, J. G. P. Barnes, B. Krieg-Brueckner, and B. A. Wichmann, SIGPLAN NOTICES, Vol. 14, No. 6, June 1979, Part B ("The Government of the United States of America grants free permission to reproduce this document for the purpose of evaluating and using the Ada language"). (Ada^(*) is a registered trademark of the United States Government, Ada Joint Program Office.)

Chapter 6 explains the notion of deadlock in which various processes cannot proceed because they are waiting for events that will never happen. The chapter discusses the major areas of deadlock research, and presents various means of dealing with deadlock and the related problem of indefinite postponement. The chapter includes a detailed discussion of deadlock avoidance with Dijkstra's Banker's Algorithm.

Part Three discusses storage management for both real storage and virtual storage systems. Chapter 7 traces the development of real storage systems from single user dedicated systems through the various forms of partitioned multiprogram-

ming systems. Chapters 8 and 9 deal with virtual storage organization and management, respectively. Chapter 8 motivates the concept of virtual storage, and discusses the reduction of mapping information by the block mapping techniques and paging and segmentation. A detailed discussion of virtual storage organization and address translation in paged/segmented systems is presented. Chapter 9 discusses the various strategies for managing virtual storage systems. Fetch, placement, and replacement strategies are considered; both demand fetch and anticipatory fetch strategies are discussed. The chapter concentrates on page replacement strategies; it considers the Principle of Optimality, and the random, FIFO, LRU, LFU, and NUR strategies. Then, Denning's working set theory of program behavior is presented, and working set page replacement is analyzed.

Part Four deals with processor management, in particular the issues of processor scheduling and multiprocessing. Chapter 10 concentrates on scheduling strategies; it discusses high-level, intermediate-level, and low-level scheduling, scheduling objectives and criteria, priority scheduling, static vs. dynamic priorities, earned vs. bought priorities, and deadline scheduling. Various scheduling algorithms are presented including FIFO, RR, SJF, SRT, and HRN. The chapter ends with a thorough analysis of multilevel feedback queueing mechanisms. Chapter 11 explains multiprocessing, motivated as a means of improving performance and reliability. The exploitation of parallelism is considered; the techniques of loop distribution, tree height reduction, and the "never wait" rule are discussed. Various multiprocessor hardware organizations and operating systems organizations are analyzed. This material has strong ties to the material on networks in Chapter 16.

Part Five considers auxiliary storage management. Chapter 12 discusses disk scheduling; it explains the operation of moving-head disk storage, motivates the need for disk scheduling, and presents the popular disk scheduling strategies including FCFS, SSTF, SCAN, N-step SCAN, C-SCAN, the Eschenbach scheme and rotational optimization. A number of systems considerations that might affect the usefulness of disk scheduling are examined.

Chapter 13 considers file and database management systems. The chapter discusses file system functions and operations; the data hierarchy; blocking and buffering; sequential, indexed sequential, direct, and partitioned file organizations; queued and basic access methods; hierarchical file system structure; contiguous and noncontiguous allocation; linked allocation, file mapping, file descriptors, access control; and backup and recovery. The importance of database systems, especially in the context of operating systems, is emphasized; the discussion considers the advantages of database systems, data independence, database languages, the database administrator, distributed database, and data dictionary concepts. The chapter ends with a discussion of the hierarchical, network, and relational database models.

Part Six deals with the issues of computer system performance. Chapter 14 considers the issues of performance measurement, monitoring, and evaluation. The chapter discusses timings, instruction mixes, kernel programs, analytic models, benchmarks, synthetic programs, simulation, and performance monitoring. Bottleneck isolation and removal are examined. Both negative and positive feedback mechanisms are analyzed. The chapter includes a very large complement of exercises, many of which are suitable as term projects, particularly in simulation-oriented courses.

Chapter 15 presents a mathematical treatment of analytic modeling; both queueing models and Markov processes are considered. The chapter may be omitted without loss of continuity, but it is highly recommended for students who have had some background in calculus, probability, and statistics. The queueing theory portion of the chapter discusses the notions of source, arrivals, Poisson arrivals, service times, queue capacity, multiple servers, queue disciplines, traffic intensity, server utilization, steady state vs. transient solutions, and Little's Result. Two case studies are presented: analyzing an M/M/1 queueing system, and analyzing an M/M/c queueing system. The section of the chapter on Markov processes concentrates on the special case of birth and death models; a rather detailed case study analyzes the performance of a disk subsystem. Portions of the presentation on queueing theory are based on material in Chapter 5 of *Probability, Statistics, and Queueing Theory with Computer Science Applications* by Arnold O. Allen. Copyright 1978 by Academic Press, Inc., New York. Adapted with permission.

Part Seven considers computer networks and security issues. Chapter 16, Network Operating Systems, discusses network categories including resource sharing networks, distributed computation networks, and remote communication networks. A detailed discussion of packet switching is presented; included is the ISO OSI layered architecture, the X.25 standard, and the datagram and virtual circuit models. Network operating systems are examined as well as the primitive operations required to service them-user communication, job migration, data migration, and control primitives. The popular network organizations are examined including the star, ring, and mesh topologies. Notions of security, privacy, encryption, and authentication are discussed; this is preliminary to the more detailed presentation in Chapter 17. Local networking is considered in depth; the techniques of CSMA/CD, token passing, and message slots are explained. The operation of Ethernet is discussed. The chapter ends with a case study of Digital Equipment Corporation's DECnet and its DNA (Digital Network Architecture). This case study emphasizes the functions and capabilities provided in a major network operating system, especially those of file handling and interprocess communication.

Chapter 17 deals with computer security and its importance in operating systems. The chapter discusses security requirements, the need for a total approach to security, external security, operational security, surveillance, threat monitoring, amplification, password protection, auditing, access controls, security kernels, hardware security, and survivable systems. It continues with a detailed discussion of the capabilities-based, object-oriented systems that are receiving so much attention today as the means for achieving systems that afford greater security. A case study is presented on the object-oriented architecture of the IBM System/38. Cryptography is discussed; a cryptographic privacy system is illustrated; cryptanalysis, public key systems, digital signatures, and the DES and RSA schemes are explained; numerous applications of cryptography are listed. The DES standards document published by the United States Government is included as an appendix to the text. Operating system penetration is considered in depth; generic system functional flaws and generic operating system attacks are categorized. The chapter concludes with a case study examining the successful penetration of an existing operating system.

Part Eight presents five detailed case studies on important operating systems, namely, the UNIX system, VAX/VMS, CP/M, MVS, and VM. The body of the text discusses general principles; the case studies deal with the real issues of real operating systems.

Chapter 18 discusses the UNIX operating system developed by Bell Laboratories. The UNIX system has been nothing less than a phenomenon of its time. It was developed primarily by two people for their own use. Now it is used in universities and industrial environments throughout the world. Versions developed for personal computers are becoming quite popular; some enthusiasts believe the UNIX system will eventually displace CP/M as the de facto standard personal computer operating system. (This issue is investigated further in Chapter 20.) The case study includes a discussion of the interesting UNIX input/output system, and the UNIX-originated concepts of pipes and filters. Within the UNIX system case study is another case study on Microsoft's XENIX system—a version of the UNIX system developed for 16-bit microcomputers. Microsoft supplies a XENIX-like system for the IBM Personal Computer.

Chapter 19 discusses Digital Equipment Corporation's top-of-the-line operating system, VAX/VMS. VAX extends the 16-bit architecture of DEC's successful PDP-11 series into the realm of today's popular 32-bit virtual storage systems. The case study focuses on storage management, process scheduling, input/output, record management services, interprocess communication, and process synchronization. VAX is quite typical of today's efforts by minicomputer manufacturers to produce systems that challenge the power of large mainframe systems. Major portions of the VAX case study are based upon *Computer Programming and Architecture: The VAX-11* by H. M. Levy and R. H. Eckhouse, Jr., Digital Press, 1980, and VAX-11 Software Handbook, Digital Equipment Corporation, 1981. The author is grateful for permission granted to use these materials.

Chapter 20 discusses Digital Research's CP/M operating system for microcomputers. Initially developed for the 8-bit micros that served at the heart of early personal computers like Radio Shack's TRS-80 Model I, CP/M has been extended considerably to compete in the 16-bit arena—it is offered as CP/M-86 for the 16-bit IBM Personal Computer. The case study discusses PL/M, portability, table-driven systems, memory allocation, logical-to-physical device mapping, the Console Command Processor (CCP), the Basic Input/Output System (BIOS), the Basic Disk Operating System (BDOS), and the file system. The chapter includes two case-studies-within-case-studies: one on MP/M, a multiuser CP/M-based timesharing system, and one on CP/NET, a networking system for CP/M-based and MP/M-based microcomputers.

Chapter 21 discusses IBM's top-of-the-line operating system, MVS, designed for very large-scale processors. The chapter traces the history of IBM operating systems development since the announcement of the System/360. Important aspects of IBM

hardware architecture are reviewed. Then, many aspects of MVS are examined in detail -MVS functions, the Supervisor, the Master Scheduler, the Job Entry Subsystem, the System Management Facility, the System Activity Measurement Facility, the Timesharing Option, data management, the Real Storage Manager, the Auxiliary Storage Manager, the Virtual Storage Manager, the System Resources Manager, storage organization, resource control, locking, Enqueue, Reserve, tasks, service requests, multiprocessing, performance, and monitoring system activity.

Chapter 22 discusses what is perhaps the most "exotic" of the operating systems in the case studies, namely IBM's VM virtual machine operating system. It enables one computer system to execute several operating systems simultaneously. This capability allows an installation to run dramatically different operating systems at once, or to run different versions of the same system-perhaps allowing a new release to be tested while a production system continues operation. VM has particularly interesting ramifications in networking, as is evidenced by IBM's Hydra concept and Spartacus Computers' Kangaroo (Datamation, August 1981). The chapter discusses the history of VM, the Control Program (CP), demand paging, minidisks, console management, user privilege classes, the VM directory, the Conversational Monitor System (CMS), the Remote Spooling and Communications System, performance considerations, the Virtual Machine Assist Feature, the Extended Control Program Support Feature, performance measurement, performance analysis, reliability, availability, and serviceability. The case study ends with a discussion of why VM may emerge as IBM's banner operating system for large-scale processors for the mid-to-late 1980s.

The richness of the case studies provides the material for comparing and contrasting the different design and implementation philosophies used in contemporary operating systems. The case studies span the full range from "tiny" operating systems like CP/M to massive systems like MVS. They include mainframe operating systems like MVS and VM, minicomputer operating systems like VAX/VMS and UNIX, and microcomputer operating systems like CP/M and XENIX. They include real storage systems and virtual storage systems, real machine systems and virtual machine systems, single user systems and multiuser systems, stand-alone systems, multiprocessing systems, and networked systems.

It is a pleasure to acknowledge the many people who have contributed to this project. The most important acknowledgment is to the hundreds of authors represented in the literature sections in the chapters; their fine papers and texts have provided the diversity of interesting material that makes operating systems such a fascinating area. The book was reviewed by experts in many fields. The core of the review team consisted of James Peterson of the University of Texas at Austin, Richard Wexelblatt of Sperry Univac, Paul Ross of Millersville State College, and Anthony Lucido of Intercomp.

The sections of the book dealing with computer hardware, microprogramming, and computer security were reviewed by Steve Paris of Prime Computer. Bart Guerreri, president of DSD Laboratories, contributed considerable hardware expertise. Nathan Tobol, consulting engineer for Codex Corporation and chairman of the IEEE 802 Local-Area Networking subcommittee, reviewed Chapter 16, Network Operating Systems, and contributed valuable material from one of his forthcoming papers. Larry Nelson, Chief of Systems Support at AVCO Services, contributed most of the material in the MVS case study, and provided many useful insights into VM. Barry Shein, who administered UNIX and VAX systems for Harvard University, contributed many useful suggestions that helped me refine those case studies. William Blocher, president of The Bit Bucket, provided insights on CP/M.

Eliezer Gafni of MIT, and Anat Gafni and Josefina Bondoc of Boston University scrupulously examined Chapter 15, on Analytic Modeling; the material on queueing theory and Markov processes was polished considerably by the incorporation of their numerous suggestions.

Others who provided assistance and inspiration throughout the writing effort were Julius Zigman, Miriam Zigman, Stephanie Guerreri, Eric Shoemaker, Mary Wiles, Steven Broderick, Richard Miles, and Shirley Spas.

My production editor, William Yskamp of Addison-Wesley, has done an impeccable job bringing this book to publication. His dedication to the project never wavered, his influence on the form and style of the finished product was truly substantial, and his leadership was critical to the timely publication of the text.

My wife, Barbara, and my children, Paul and Abbey, provided the incredible support and understanding without which this text could never have come to fruition. They collectively contributed 2000 hours of researching, sorting, copying, word processing, and proofreading. Their efforts helped me trim one year from the writing schedule for the text.

William B. Gruener, Executive Editor, the computer sciences, Addison-Wesley Publishing Company, has been my mentor in publishing since 1978. Bill is truly responsible for the fact that this book happened. He and Addison-Wesley placed impressive resources at my disposal. I hope this work merits the trust and confidence they have shown in me.

Any effort of this scope is bound to have its flaws. I assume complete responsibility for any remaining defects. I am currently researching and writing the next edition of this work, and would be most grateful for your comments, criticisms, and corrections. Any correspondence should be sent to Harvey M. Deitel (author), c/o Computer Science Editor, Addison-Wesley Publishing Company, Reading, Mass. 01867. I will acknowledge all correspondence immediately.

H. M. D.

Framingham, Massachusetts August 1983

BIBLIOTHEQUE DU CERIST

Contents

About the Author

PART 1 OVERVIEW

CHAPTER 1 INTRODUCTION

	Outline
1.1	Opening Remarks
1.2	Generations of Operating Systems
1.3	Early History of Operating Systems
1.4	Developments of the Early 1960s
1.5	The IBM System/360 Family of Computers
1.6	Industry Reaction to the System/360
7	Timesharing Systems
.8	The Emergence of a New Field: Software Engineering
.9	Unbundling of Software and Hardware
.10	Future Trends
	Summary

CHAPTER 2 HARDWARE, SOFTWARE, FIRMWARE

2	3

xxvii

3

	Outline
2.1	Introduction
2.2	Hardware
2.3	Software
2.4	Firmware
	Summary 44

xvii

PART 2 PROCESS MANAGEMENT

CHAPTER 3 PROCESS CONCEPTS

PROCESS CONCEPTS	53
Outline	. 54
Introduction	. 55
Definitions of "Process"	. 55
Process States	. 55
Process State Transitions	. 56
The Process Control Block	. 57
Operations on Processes	. 58
Suspend and Resume	. 60
Interrupt Processing	. 62
The Nucleus of the Operating System	. 67
Summary	. 68

CHAPTER 4 ASYNCHRONOUS CONCURRENT PROCESSES

Outline	- 74
Introduction	75
Parallel Processing	75
A Control Structure for Indicating	
Parallelism: Parbegin/Parend	75
Mutual Exclusion	77
Critical Sections	78
Mutual Exclusion Primitives	78
Implementing Mutual Exclusion Primitives	80
Dekker's Algorithm	80
N-Process Mutual Exclusion	87
A Hardware Solution to Mutual Exclusion:	
The Testandset Instruction	87
Semaphores	89
Process Synchronization with Semaphores	90
The Producer -consumer Relationship	91
Counting Semaphores	93
Implementing Semaphores, P and V	93

CHAPTER 5 CONCURRENT PROGRAMMING: MONITORS; THE ADA RENDEZVOUS

Summary

1	0	1
	v	

94

73

	Outline	102
5.1	Introduction	103
5.2	Monitors	103

3.1

3.2

3.3

3.4

3.5 3.6 3.7

3.8 3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

125

153

5.3	Simple Resource Allocation with Monitors	104
5.4	Monitor Example: The Ring Buffer	105
5.5	Monitor Example: Readers and Writers	106
5.6	Ada: The Concurrent Programming	
	Language for the 1980s	109
5.7	Motivation for Ada Multitasking	109
5.8	Correctness of Concurrent Programs	109
5.9	The Ada Rendezvous	110
5.10	The Accept Statement	110
5.11	Ada Example: Producer-consumer Relationship	111
5.12	The Select Statement	113
5.13	Ada Example: The Ring Buffer	113
5.14	Ada Example: Readers and Writers	114
	Summary	117

CHAPTER 6 DEADLOCK

	Outline	126
6.1	Introduction	127
6.2	Examples of Deadlock	127
6.3	A Related Problem: Indefinite Postponement	130
6.4	Resource Concepts	130
6.5	Four Necessary Conditions for Deadlock	131
6.6	Major Areas of Deadlock Research	132
6.7	Deadlock Prevention	132
6.8	Deadlock Avoidance and the Banker's Algorithm	135
6.9	Deadlock Detection	139
6.10	Deadlock Recovery	141
6.11	Deadlock Considerations in Future Systems	143
	Summary	144

PART 3 STORAGE MANAGEMENT

CHAPTER 7 REAL STORAGE

	Outline
.1	Introduction
2	Storage Organization
3	Storage Management
4	Storage Hierarchy
5	Storage Management Strategies
6	Contiguous vs. Noncontiguous Storage Allocation
7	Single User Contiguous Storage Allocation
8	Fixed Partition Multiprogramming

.

хх Contents

7.9	Variable Partition Multiprogramming	165
7.10	Multiprogramming with Storage Swapping	169
	Summary	171

CHAPTER 8 VIRTUAL STORAGE ORGANIZATION

Introduction															Ì		 ,	
Evolution of Storage Organi	zatio	ons	· ·	 		Ì	 ż	÷	•••	÷	÷		•••	·		•	 •	
Virtual Storage: Basic Conce	epts			 													 	ż
Multilevel Storage Organiza	tion												 					
Block Mapping		. ,											 					
Paging: Basic Concepts													 					
Segmentation													 					
Paging/Segmentation System	15 .												 					

179

215

CHAPTER 9 VIRTUAL STORAGE MANAGEMENT

Outline	. 216
Introduction	. 217
Virtual Storage Management Strategies	. 217
Page Replacement Strategies	. 217
Locality	. 222
Working Sets	. 224
Demand Paging	. 227
Anticipatory Paging	. 228
Page Release	. 228
Page Size	. 229
Program Behavior under Paging	. 231
Summary	. 233

PART 4 **PROCESSOR MANAGEMENT**

CHAPTER 10 JOB AND PROCESSOR SCHEDULING	247
Outline	 . 248
Introduction	 . 249
Scheduling Levels	 . 249

10.2	Scheduling Levels	249
10.3	Scheduling Objectives	250
10.4	Scheduling Criteria	251
10.5	Preemptive vs. Nonpreemptive Scheduling	252
10.6	The Interval Timer or Interrupting Clock	253

8.1 8.2

8.3 8.4 8.5 8.6 8.7 8.8

9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10

10.1

10.7	Priorities	253
10.8	Deadline Scheduling	254
10.9	First-In-First-Out (FIFO) Scheduling	254
10.10	Round Robin (RR) Scheduling	255
10.11	Quantum Size	255
10.12	Shortest-Job-First (SJF) Scheduling	257
10.13	Shortest-Remaining-Time (SRT) Scheduling	257
10.14	Highest-Response-Ratio-Next (HRN) Scheduling	258
10.15	Multilevel Feedback Queues	259
	Summary	261

CHAPTER 11 MULTIPROCESSING

269

270
271
271
272
272
272
273
27 7
278
282
283
283
284
286
287
288
288
290
291
292

PART 5 AUXILIARY STORAGE MANAGEMENT

CHAPTER 12 DISK SCHEDULING

30	1

	Outline	302
12.1	Introduction	303
12.2	Operation of Moving-Head Disk Storage	303
12.3	Why Scheduling Is Necessary	305
12.4	Desirable Characteristics of Scheduling Policies	306
12.5	Seek Optimization	307
12.6	Rotational Optimization	311

xxii Contents

12.7	Systems Considerations	312
	CHAPTER 13 FILE AND DATABASE SYSTEMS	321
	Outline	322
13.1	Introduction	323
13.2	File System Functions	323
13.3	The Data Hierarchy	324
13.4	Blocking and Buffering	325
13.5	File Organization	326
13.6	Queued and Basic Access Methods	327
13.7	File Characteristics	327
13.8	The File System	328
13.9	Allocating and Freeing Space	329
13.10	File Descriptor	334
13.11	Access Control Matrix	336
13.12	Access Control by User Classes	336
13.13	Backup and Recovery	337
13.14	Database Systems	228
13.15	Database Models	330
	Summary	340 344

PART 6 **PERFORMANCE**

CHAPTER 14 PERFORMANCE MEASUREMENT, MONITORING, AND **EVALUATION** Outline

	Outline	354
14.1	Introduction	355
14.2	Important Trends Affecting Performance Issues	355
14.3	Why Performance Monitoring and Evaluation Are Needed	356
14.4	Performance Measures	357
14.5	Performance Evaluation Techniques	359
14.6	Bottlenecks and Saturation	364
14.7	Feedback Loops	364
	Summary	366

CHAPTER 15 ANALYTIC MODELING

353

	Outline	380
15.1	Introduction	381
15.2	Queueing Theory	381
15.3	Markov Processes	397
	Summary	405

PART 7 NETWORKS AND SECURITY

CHAPTER 16 NETWORK OPERATING SYSTEMS

415

	Outline
16.1	Introduction
16.2	Elements of Computer Networks
16.3	Network Categories
16.4	Packet Switching
16.5	Network Operating Systems (NOS)
16.6	NOS Primitives
16.7	Network Topologies
16.8	Network Operating Systems and Distributed Operating Systems
16.9	Security, Privacy, Encryption, and Authentication
16.10	Local Networking
16.11	Case Study: Ethernet
16.12	Case Study: DECnet
	Summary

CHAPTER 17 OPERATING SYSTEMS SECURITY

	Outline
17.1	Introduction
.7.2	Security Requirements
17.3	A Total Approach to Security
17.4	External Security
17.5	Operational Security
17.6	Surveillance
17.7	Threat Monitoring
17.8	Amplification
17.9	Password Protection
17.10	Auditing
17.11	Access Controls
17.12	Security Kernels
17.13	Hardware Security
17.14	Survivable Systems
17.15	Capabilities and Object-Oriented Systems
17.16	Case Study: The Object-Oriented Architecture of the IBM System/38
17.17	Cryptography
17.18	Operating System Penetration
17.19	Case Study: Penetrating an Operating System
	Summary

PART 8 **CASE STUDIES**

CHAPTER 18 CASE STUDY: UNIX SYSTEMS

	Outline
18.1	Introduction
18.2	History
18.3	Versions of UNIX Systems
18.4	Design Goals
18.5	Process Control
18.6	Input/Output System
18.7	File System
18.8	Shell
18.9	Performance vs. Usability
18.10	XENIX: A Commercial UNIX System Standard
	Summary

CHAPTER 19 CASE STUDY: VAX

	Outline	6
19.1	Introduction 50	17
19.2	VAX Design Goals	17
19.3	PDP-11 Compatibility	8
19.4	Instructions and Storage 50	8
19.5	The VAX-11/780	9
19.6	Storage Management	1
19.7	Process Scheduling	3
19.8	VAX/VMS Input/Output	7
19.9	Record Management Services	3
19.10	Interprocess Communication and Synchronization	6
	Summary	9

CHAPTER 20 CASE STUDY: CP/M

	Outline
. 1	Introduction
.2	History
3	PL/M
4	The CP/M Family
5	Structure of CP/M
6	Memory Allocation
7	Logical to Physical Device Mapping
3	Console Command Processor (CCP)
9	Basic Input/Output System (BIOS)

20.10	Basic Disk Operating System (BDOS)	546
20.11	The File System	546
20.12	CP/M Operation	551
20.13	MP/M	552
20.14	CP/NET	555
20.15	PL/I Subset G: The CP/M Applications Language	558
20.16	Evolution in Processor Architecture	560
20.17	CP/M-Based Software	560
20.18	The IBM Personal Computer	560
20.19	The Future of CP/M	561
	Summary	561

CHAPTER 21 MVS

	141 A 2	507
	Outline	. 568
21.1	History of MVS	. 569
21.2	MVS Design Objectives	. 569
21.3	System/370 Hardware	. 571
21.4	MVS Functions	. 575
21.5	Supervisor	. 576
21.6	Master Scheduler	. 576
21.7	Job Entry Subsystem	. 576
21.8	System Management Facility and System Activity Measurement Facility	. 578
21.9	Timesharing Option	. 578
21.10	Data Management	. 578
21.11	Real Storage Manager	. 582
21.12	Auxiliary Storage Manager	. 582
21.13	Virtual Storage Manager	. 583
21.14	System Resources Manager	. 583
21.15	Storage Organization	. 584
21.16	Resource Control	. 585
21.17	Locking	. 586
21.18	Enqueue	. 587
21.19	Reserve	. 587
21.20	Tasks and Service Requests	. 587
21.21	Dispatcher	. 588
21.22	Multiprocessing	. 588
21.23	Performance	. 590
21.24	Monitoring System Activity	. 591
21.25	Conclusions	. 592
	Summary	. 592
	CHAPTER 22	
	VM: A VIRTUAL MACHINE OPERATING SYSTEM	601
	Outline	. 602
22.1	Introduction	. 603

xxvi Contents

22.2	History	608
22.3	The Control Program (CP)	609
22.4	The Conversational Monitor System (CMS)	616
22.5	Remote Spooling and Communications System	617
22.6	Strengths of VM	619
22.7	VM Evolution	619
22.8	Performance Considerations	619
22.9	Reliability, Availability, and Serviceability	621
22.10	VM: IBM's Large-Scale Operating System for the 1980s?	622
	Summary	624
	Appendix	631
	Author Index	647
	Subject Index	653