


BIBLIOTHEQUE DU CERIST

Second Edition

S. F. BORG

Professor Emeritus of Civil Engineering Stevens Institute of Technology Hoboken, NJ 07030, USA

Published by

World Scientific Publishing Co. Pte. Ltd.
P O Box 128, Farrer Road, Singapore 9128
USA office: 687 Hartwell Street, Teaneck, NJ 07666
UK office: 73 Lynton Mead, Totteridge, London N20 8DH

Library of Congress Cataloging-in-Publication data is available.

Printed in 1962 by Litton Educational Pub., Inc.

FUNDAMENTALS OF ENGINEERING ELASTICITY

Copyright © 1990 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

ISBN 981-02-0164-8 981-02-0165-6 pbk

Printed in Singapore by JBW Printers & Binders Pte. Ltd.

IN MEMORY OF AUDREY

BIBLIOTHEQUE DU CERIST

PREFACE TO THE FIRST EDITION

This book is intended for sophomore and junior students in engineering curricula.

It may be trite to repeat that we are living in an era of "exploding technology," but for engineers this statement does perhaps bear repetition. In any event, it is this fact which has led the author to write this textbook. It is his conviction that the properly educated engineer and engineering scientist of the present and future must have a grasp of the fundamentals of engineering.

If the modern engineering curriculum is to include all of the groundwork knowledge in the many different fields that the well-prepared engineering student must know, then it will be impossible to cover, in the four-year engineering curriculum, the subject material which in the past was included in structural engineering. This broad field included strength of materials (or mechanics of materials), elementary structural analysis, and elementary structural design.

How then are we to prepare the student for truly professional engineering practice in the present and future?

It would seem that there is only one method that will fit within the framework of a four-year undergraduate curriculum, and this is to present all subjects from their truly fundamental points of view. We must go back to the origins of all fields, re-exploring the assumptions, hypotheses and approximations that ultimately led to the development of the engineering forms of the various subjects.

In the subject now called "strength of materials," going back to the origins means taking as our starting point the subject matter of the mathematical theory of elasticity. Otherwise stated, the presentation of material in this text is based on the assumption that the fountainhead, or essential source, of all knowledge of structural theory and practice is the mathematical theory of elasticity.

The mathematical theory of elasticity may be called the parent, and the engineering elasticity (or strength of materials) the offspring, even though the latter developed at an earlier time than the former, because the mathematical and scientific justification of the theories developed in the strength of materials is only to be found in the body and extensions of the mathematical theory of elasticity. The engineering elasticity is essentially an approximation or simplification of the more exact theory, so that the practicing engineer could utilize the predictions and results of mathematical elasticity. Textbooks on strength of materials have presented the engineering form of the mathematical theory of elasticity, but rarely, if ever, has the relationship between parent and offspring been made clear. Understanding the relationship would seem to be essential if the student is to have a good understanding of the coverage presented. To present the subject in such a manner and with such goals is what the present textbook attempts to do for the student

Because this book is written for the beginning student of structural engineering, we start with an explanatory chapter in which the basic philosophy behind the writing of the book is outlined. The purpose of the book is stated clearly and, as additional background, a brief historical summary of the field is presented. This will further help to explain to the student the purpose and intent of the text.

Tensor, the family name of the quantities of mathematical physics and, hence, of engineering, is a concept all modern engineers should understand and be familiar with. The tensor is introduced most naturally in this book because straightforward matrix-tensor statements are especially adaptable to discussions of engineering elasticity. For this reason, matrix-tensor arguments are utilized wherever possible. A basic, elementary treatment of matrix-tensor theory, suitable for our purposes, is given in Chapter 2. In this chapter also the elements of finite difference calculus are dealt with, because this also is a valuable tool that engineers should be familiar with and because elementary finite difference methods fit naturally into the framework of the coverage of the book.

The equations of the linearized theory of elasticity are presented next, and then it is shown how the ordinary, simplified structures of everyday engineering usage are analyzed using outgrowths and simplified forms of the basic, more exact theories. It is clearly shown just what approximations and assumptions are introduced in the basic theory of the engineering analysis — and it is shown why they are introduced.

In the remaining chapters the analysis of the key structural units (the bar, beam, etc.) is presented, first in the more exact linearized theory of elasticity solutions, and then in the approximate engineering solutions.

Extensions of the engineering analysis (the shear-moment curve construction, conjugate beam method, etc.) are introduced, where applicable, to indicate the directions in which this field has advanced.

Many problems dealing with the text material have been included, because an undergraduate engineering or science student can truly master his subject only when he can solve quantitative problems in connection with it.

In summary, then, the book has been written because the author believes the student in engineering must have a training and background in the field covered by the text. It is also the author's sincere hope that practicing engineers in the fields of applied mechanics and structural engineering will find the book worth while.

PREFACE TO THE SECOND EDITION

The second edition follows the format of the first one. Several typographical errors have been corrected and several new topics or extensions of the original material have been included in an Appendix following Chapter 13 at the end of the book.

Overall however, the two fundamental premises have been adhered to, namely:

- 1. In order to attain a real understanding of the subject which we call "strength of materials" or "mechanics of materials" one must go back to the beginnings of these fields the linearized mathematical theory of elasticity. Hence the title of the book stressing the words engineering elasticity.
- 2. The field of engineering elasticity is a good one to utilize in introducing to the undergraduate engineering student the important and useful topic of tensors. And for the engineer the matrix representation of the tensor is the easiest to visualize and to understand. Hence the use of the matrixtensor notation.

The author wishes to express sincere thanks to his publishers, World Scientific Publishing Co., for reprinting the text and for their continual help and encouragement in seeing this task through to completion.

> S. F. BORG March 3, 1990

BIBLIOTHEQUE DU CERIST

CONTENTS

CHAPTER	PAGE
PREFACE TO THE FIRST EDITION	vii
PREFACE TO THE SECOND EDITION	ix
1. INTRODUCTION AND HISTORICAL BACKGROUND	1
1-1 Introduction 1-2 Brief Historical Survey	1 4
2. MATHEMATICAL PRELIMINARIES: THE ELEMENTS OF MATRIX-TENSOR THEORY AND OF THE FINITE DIFFERENCE METHOD	6
2-1 Introduction	6
2-2 Matrix Algebra2-3 Scalar, Vector and Tensor Analysis	7
2-3 Scalar, Vector and Tensor Analysis	12
2-4 The Scalar	12
2-5 The Vector	13 16
2-6 The Tensor	20
 2-7 Brief Remarks on the Tensor Notations 2-8 Finite Difference Method — Introduction 	20
2-9 Outline of the Finite Difference Method	20
2-9 Outline of the Finite Difference Method 2-10 Summary	24 24
3. THE TENSORS OF ELASTICITY — THE INERTIA, STRAIN, AND STRESS TENSORS	28
3-1 Introduction	28
3-2 The Inertia Tensor	28
3-3 The Strain Tensor	36
3-4 The Complete Non-Linear Strain Tensor	41
3-5 The Stress Tensor	41
3-6 Summary	44
4. THE CONNECTION BETWEEN THE LINEARIZED MATHEMATICAL THEORY OF ELASTICITY	
AND ENGINEERING ELASTICITY	47
4-1 Introduction	47

CHA	PTER		PAGE
	4-2	The Equations of Equilibrium in the	
		Linearized Theory of Elasticity	47
	4-3	The Boundary Conditions in the	
		Linearized Theory of Elasticity	51
	4-4	The Strain Compatibility Conditions in	
		the Linearized Theory of Elasticity	54
	4-5	Hooke's Law in the Linearized Theory of Elasticity	56
	4-6	The Two-Dimensional Form of the Equations	
		of the Linearized Theory of Elasticity	60
	4-7	The Engineering Form of the Equations	
		of the Theory of Elasticity	61
	4-8	The St. Venant Principle	65
	4-9	Summary	66
5.	тны	SIMPLE TENSION-COMPRESSION	
υ.		RUCTURE — THE TRUSS	69
	5-1	Introduction	69
	5-2	The Tension-Compression Bar in Elasticity	69
	5-3	The Truss in the Theory of Elasticity	73
	5-4	The Engineering Solution of the Truss	74
	5-5	The Deformation of the Engineering Truss	79
	5-6	Summary	81
6.	THE	SIMPLEST SHEAR-TENSION-COMPRESSION	
		RUCTURE – THE BEAM	84
	6-1	Introduction	84
	6-2	The Pure Moment Acting on a Bar —	04
	0-2	the Theory of Elasticity Solution	84
	6-3	The Engineering Elasticity Solution For the Beam —	01
	00	The Bernoulli-Euler Solution	89
	6-4	The Shear, Moment, Slope, Deflection Relations	91
	6-5	The Loads on an Engineering Beam	95
	6-6	The Shear Stress in the Engineering Beam	97
	6-7	The Shear and Moment Curves	100
	6-8	The Approximation Involved in the	
		Bernoulli-Euler Solution for the Beam	102
	6-9	Summary	104
7.	SHE	AR AND MOMENT DIAGRAMS	108
	7-1	Introduction	108
	7-2	The Basic Shear and Moment Curves	108
	7-3	The Shear Curve for Several Loads on the Beam	112

СНА	PTER		PAGE
	7-4	The Moment Diagram by Parts	115
	7-5	The Combined Moment Curve	119
	7-6	Summary	124
8.	THE	BENDING STRESS AND	
	SE	IEAR DESIGN OF BEAMS	127
	8-1	Introduction	127
	8-2	Steel and Timber Beam Design	127
	8-3	Structural Analysis — Investigation and Design	130
	8-4	Steel Beams Three Examples	130
	8-5	Timber Beams — Investigation and Design	138
	8-6	Summary	144
9.	DEF	LECTION OF BEAMS	148
	9-1	Introduction	148
	9-2	The Double Integration Method	149
	9-3	The Moment-Area Method	153
	9-4	The Conjugate Beam Method	160
	9-5	Special Support Conditions of the	
		Conjugate-Beam Method	163
	9-6	Deflections by the Finite Difference Method	167
	9-7	A Finite-Difference Solution Using $EI_{*}\frac{d^{4}v}{dx^{4}} = w(x)$	171
	9-8	Summary	173
10.	STA	FICALLY INDETERMINATE BEAMS	176
	10-1	Introduction	176
	10-2	Statically Determinate Beams	176
	10-3	Statically Indeterminate Beams	178
	10-4	Strain or Deformation Compatibility	
		for Indeterminate Beams	180
	10-5	Indeterminate Beam Solution by the	
		Conjugate Beam Method	182
	10-6	The Indeterminate Beam Solved by the	
		Finite Difference Method	187
	10-7	Summary	191
11.		DING INSTABILITY —	
	TH	IE DESIGN OF COLUMNS	193
	11-1	Introduction	193

xiii

228

248

APTER		PAGE
11-2	The Euler Solution for a Hinged-Hinged Column	195
11-3	The Euler Solution for Other End Conditions	197
11-4	The Inconsistency in the Euler Solution	199
11-5	The Elastica a Column With Large Deflections	200
11-6	Column Behaviour When Stresses Exceed	
	the Proportional Limit	212
11-7	The Engineering Form of the Column Formulas	215
11-8	The Design and Investigation of Engineering Columns	217
11-9	Critical Buckling Loads Obtained by the	
	Finite Difference Method	-219
11-10	Summary	224
	-	

12. THE TORSION PROBLEM

12-1	Introduction	228
	The Pure Shear Structure	228
	The Classical St. Venant Torsion Solution	230
12-4	Two Exact Solutions to the Torsion Problem	236
	Torsion Solutions For Other Cross-Sectional Shapes	241
12-6	The Square Cross Section Solved by	
	the Finite Difference Method	242
12-7	Summary	245

13. ENGINEERING ELASTICITY ANALYSIS OF SPECIAL STRUCTURES

13-1	Introduction	248
13-2	The Cable and the Membrane	249
13-3	The Cable	249
13-4	The Membrane	255
13-5	The Membrane Solution for the Cylindrical Container	257
13-6	The Membrane Solution for the Spherical Container	258
13-7	The Rigid Frame and Its Relation	
	to the Continuous Beam	259
13-8	A Rigid Frame Solution Using	
	the Conjugate Beam Method	261
13-9	The Flat Plate	263
13-10	The Curved Beam, or Arch	265
13-11	The Sheli	265
13-12	Summary	267

сн

CONTENTS	
REFERENCES	271
INDEX	273
APPENDIX	277

•