
COMPUTATIONAL ASPECTS OF VLSI

JEFFREY D. ULLMAN

COMPUTER SCIENCE PRESS

CLEZO

COMPUTATIONAL ASPECTS OF VLSI

JEFFREY D. ULLMAN *STANFORD UNIVERSITY*

TABLE OF CONTENTS

Chapter 1: VLSI Models

1.1: Integrated Circuits and the Mead-Conway Rules

1

91

102

1

- 1.2: VLSI Implementation of Logic 11
- 1.3: Electrical Properties of Circuits 18
- 1.4: Abstractions of VLSI Circuits29Exercises38Bibliographic Notes40

Chapter 2: Lower Bounds on Area and Time 42

- 2.1: Introduction to Lower Bound Arguments 42
- 2.2: Information and Crossing Sequences 50
- 2.3: Probabilistic Circuits and Algorithms 58
- 2.4: Circuits with Repetition of Inputs 67 Exercises 75 Bibliographic Notes 78

Chapter 3: Layout Algorithms 80

3.1: H-trees 81
3.2: Lower Bounds on Tree Layouts 85
3.3: A Divide-and-Conquer Layout Algorithm
3.4: Layout of Regular Expression Recognizers
3.5: Layout of Planar Graphs 111
Exercises 127
Bibliographic Notes 130

Chapter 4: Algorithm Design for VLSI 131

- 4.1: Processors and Processor Networks 132
- 4.2: A Programming Language for Processors 139
- 4.3: The Tree-of-Processors Organization 143
- 4.4: The Mesh-of-Processors Organization 149
- 4.5: The Mesh-of-Trees Organization 158 Exercises 173 Bibliographic Notes 174

Chapter 5: Systolic Algorithms 175
5.1. Introduction: Systolic Convolution 175
5.2. Transformation Rules for Systolic Algorithms 178
5.3: Matrix Multiplication and Transitive Closure 189
5.4: Other Matrix and Graph Algorithms 198
Exercises 206
Bibliographic Notes 208
Chapter 6: Organizations with High Wire Area 209
6.1: The Shuffle-Exchange Organization 210
6.2: The Butterfly Organization 216
6.3. Algorithms on Butterfly Networks 219
6.4: Ideal Parallel Computers and Their Simulation 227
Exercises 241
Bibliographic Notes 242
Chapter 7: Overview of VLSI Design Systems 244
7.1: Design Languages 244
7.2: CIF: A Geometry Language 252
7.3: CHISEL: A Preprocessor for Generating CIF 258
7.4: Esim: A Switch Level Language 268
7.5: Lgen: A Logic Language 269
7.6: LAVA: A Sticks Language 273
7.7: PLA's and Their Personalities 283
7.8: Finite Automaton Languages: SLIM 290
7.9: A Regular Expression Language 300
Exercises 307
Bibliographic Notes 309
Chapter 8: Compilation and Optimization Algorithms 310
8.1: Optimization of PLA Personalities 311
8.2: Compilation of Sticks Languages 323
8.3: Compilation of Logic 338
8.4: Compilation of Regular Expressions 355
8.5: Toward Silicon Compilation 369
Exercises 378
Bibliographic Notes 380
Chapter 9: Algorithms for VLSI Design Tools 382
9.1: Reporting Intersections of Rectangles 382
9.2: Circuit Extraction Algorithms 393
9.3: Design Rule Checking 398
× · · · · · · · · · · · · · · · · · · ·

9.4: An Algorithm for Simulation of Switch Circuits 408
9.5: The PI Placement and Routing System 425
9.6: Optimal Routing 439

Exercises 450
Bibliographic Notes 453

Appendix 455

- A.1: Big-Oh and Big-Omega 455
- A.2: Depth-First Search 456
- A.3: Regular Expressions and Nondeterministic Automata 457
- A.4: Sketch of the Flashsort Parallel Sorting Algorithm 461

Bibliography 466

Index 484