¢
{
3

Roland C. Backhouse
Syntax of
Programming
Languages
Theory and Practice

C.A.R. HOARE SERIES EDITOR

BIBLIOTHEQUE DU CERIST

SYNTAX OF PROGRAMMING

LANGUAGES
Theory and Practice

ROLAND C. BACKHOUSE

Heriot-Watt University
Edinburgh, Scotland

Prentice /Hall {58

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DELH}
SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON

BIBLIOTHEQUE DU CERIST

CONTENTS

PREFACE xi

GLOSSARY OF SYMBOLS xv

1 FUNDAMENTALS 1

1.1 Basic Definitions 5

1.1.1 Languages 35
1.1.2 Grammars 7
1.1.3 Classification of Grammars 13
1.2 Ambiguity in Context-Free Grammars 14

1.2.1 Bracketed Forms I4

1.2.2 Derivation Trees and Ambiguity 17
1.2.3 Examples of Ambiguous Grammars 19
1.24 A Negative Result 24

Exercises 25
1.3 Graph Searching 27
1.3.1 Developing an Algorithm 29
1.3.2 Choice of Dara Structures and Implementation 32

1.3.3 Checking the Solution 35
1.34 Summing Up 39

1.4 Useless Productions 40

1.4.1 Rephrasing the Definition 41
1.4.2 Accessible Non-terminals 42
1.4.3 Terminating Productions 43

Exercises 57
Bibliographic Notes 57

vii

BIBLIOTHEQUE DU CERIST

viii CONTENTS

2 REGULAR LANGUAGES 59

2.1 Transition Diagrams and Non-Deterministic Machines 60

2.2 Regular Expressions 63

2.3 Converting a2 Non-Deterministic Machine into a Deterministic
Machine 71

2.3.1 The Language Recognized by a Deterministic Machine 73
2.3.2 The Language Recognized by a Non-deterministic Machine 75
2.3.3 The Conversion Algorithm—An Example 76

2.34 A Rigorous Development of the Conversion Algorithm 78

2.4 Numbers in ALGOL 60 81
Appendix—Proof of Theorem 2.1 86
Exercises 87

Bibliographic Notes 90

3 LL PARSING 92

3.1 Syntax Analysis by Recursive Descent 92
3.2 Checking the Strong LL{k) Condition 102
3.2.1 Calculating FIRSTy Sets 104
3.2.2 Calculating FOLLOW, Sets 107
3.2.3 A Complete Example 110
3.24 A Test for Ambiguity 113
3.3 ‘The Special Case k=1 116
3.3.1 Graph-Searching and the FIRST and FOLLOW sets 117

3.3.2 An Efficient Algorithm 123
3.3.3 Implementing the Algorithm 125

3.4 LL{k) Grammars 138
3.5 Practical Considerations 147
3.5.1 Eliminating Terminal Procedures 147
352 Extend BNF 148
3.5.3 Overcoming Non-L1{1) Features 151
Exercises 152
Bibliographic Notes 153

4 LR PARSING 157

4.1 LR(0) Grammars 158
4.1.1 The Basic Parsing Algorithm 158
4.1.2 Calewlating the LR(0) Contexts 161
4.1.3 Developing the Parsing Algorithm 164
4.14 The LR(0) Condition 168

BIBLIOTHEQUE DU CERIST

4.2

4.3

CONTENTS

LR(k) and SLR(k) Grammars 172

4.2.1 LR&) Grammars 172
4.2.2 Simple LR(K) Grammars 176

Theoretical Comparisons 181

Exercises 186
Bibliographic Notes 187

ERROR REPAIR 189

51

52

53
3.4

String-to-String Repair 190

5.1.1 Edit Operations 190

5.1.2 The “Best” Repair 191

5.1.3 A Formal Model 195

5.1.4 FEquational Characterization 197
Repair of Regular Languages 199

5.2.1 An Example 199
35.2.2 The Formal Model 202
5.2.3 Eguational Characterization 203

Repair of Context-Free Languages 204
Algorithms for Finding Least-Cost Repairs 210

5.4.1 Dijkstra’s Algorithm 212
54.2 Gaussian Elimination 214

Exercises 216
Bibliographic Notes 217

ERROR RECOVERY 219

6.1
6.2
6.3

6.4
6.5

A Simple Recovery Scheme 221
Our Objective 227

Locally Optimal Repairs 233
6.3.1 The Definition 234

6.3.2 Production Positions 237
6.3.3 Repairs and Actions 239
6.3.4 Program 6.2 Again 241
6.3.5 Passing Parameters 242
6.3.6 A Summary 247

Does It Work? 247
Error Recovery in a PL/0O Parser 254

Exercises 270
Bibliographic Notes 271

ix

BIBLIOTHEQUE DU CERIST

X CONTENTS

7 LIMITATIONS 273

7.1 The uvwxy Theorem 273
7.2 Semantic Ambiguities in ALGOL 60 279

7.2.1 Side Effects 279
7.2.2 for Statements 280

7.3 Syntactic Ambiguities in PASCAL 282

7.3.1 Types 283
7.3.2 Scope Rules 284

7.4 Conclusion 287
Exercises 287
Bibliographic Notes 288

INDEX 293

BIBLIOTHEQUE DU CERIST

PREFACE

The analysis of the syntax of programming languages is a topic which, desery-
edly, occupies a prominent position in computer-science curricula because of
its relevance both to the practice of compiler construction and to the theory
of computing. It is this bridge between theory and practice which I have
chosen to stress,

The book is primarily directed towards computer-science students in
the third or final year of an undergraduate degree course. It is assumed that
the reader is familiar with the standard mathematical notation for sets and
with the mathematical concept of proof, in particular proof by induction.
The reader should have attended a course on the design of algorithms and
data structures, preferably one in which the use of loop invariants to provide
correctness proofs is an integral part. It is also preferable if the reader is
familiar with PASCAL. However, I have always made a clear distinction
between algorithms and programs so that the former can be understood
without reference to any specific programming language.

Chapter 1 (Fundamentals) begins by introducing the principal concepts
and terminology associated with context-free grammars, illustrating them
with examples taken from the “Revised Report on ALGOL 60" as well as
abstract examples. This is followed by a discussion of graph searching and its
application to eliminating useless productions from a given context-free
grammar. The material on graph searching is included in the “Fundamentals”
because it is used extensively throughout the remainder of the book.

Chapter 2 discusses the variety of ways in which regular languages may
be defined. The motivation for this chapter is the relationship between
extended BNF and regular expressions (discussed in Chapter 3) and the use of
a deterministic finite-state machine as the “heart” of an LR parser (Chapter
4). The material is standard but some of the presentation is novel—in par-

Xi

BIBLIOTHEQUE DU CERIST

xii PREFACE

ticular, when designing an algorithm to convert a non-deterministic machine
to a deterministic machine, I have taken care to stress the relationship to
graph searching.

The emphasis in Chapter 3 is on the correspondence between parsing by
recursive descent and the theory of LL parsing. The chapter begins by present-
ing a basic scheme for constructing a recursive-descent parser for a strong
LL(k) grammar. This is followed by an algorithm for testing the strong
LL(%) property, which is then specialized to the case k== 1. The chapter is
concluded by a discussion of the relationship between the LL(%) and strong
LL(k) properties, and of practical problems arising from the use of recursive
descent.

The treatment of LR parsing in Chapter 4 is entirely non-standard and
is notably shorter than Chapter 3. This is because, in my view, a study of
recursive-descent parsers is much more fruitful for the non-specialist. I have,
therefore, stressed the principles underlying an LR parser rather than the
practical details of its construction.

Chapters 5 and 6 are an in-depth study of the theory of error repair and
its application to the design of the error recovery in a recursive-descent syntax
analyzer. Errar recovery is, of course, an extremely important part of syntax
analysis and a theory which stops short of this topic does not deserve to be
called practical. The theory developed in Chapter 5 is based on the work of
M. J. Fischer and R. A. Wagner (Sec. 5.1, string-to-string repair), R. A.
Wagner (Sec. 5.2, regular language repair) and A. V. Aho and T. G. Peterson
(Sec. 5.3, repair of context-free languages); my own contribution has been to
unify the treatment of the three topics. I have preferred the term “repair” to
the more prevalent “correction” because the former is less emotive and, in
my view, more accurate. In Chapter 6 crror tecovery is seen as a compromise
between efficiency constraints and the ideal of “least-cost™ repair, Apart from
a discussion of Witth's recovery technique, which is included to motivate the
ensuing development, the material in this chapter 1s entirely original.

Chapter 7 concludes the book by exposing the limitations of context-free
grammars and encouraging the reader to a further study of the semantics of
programming languages.

A feature of the text is the inclusion of an almost complete LL(1) test,
implemented in PASCAL. This program, which is begun in Chapter 1 and
extended in Chapter 3, has been included for two reasons. Firstly, I suspect that
many students remain sceptical of the practicality of algorithms if they do not
sce them implemented. Secondly, and more importantly, I wanted to provide
a basis for intellectually demanding but realistic projects which could be used
to reinforce the material in the text. Project work is, quite rightly, a significant
element in the training of a computer scientist, but too often its educational
value is nullified by the sheer quantity of coding required, most of which is

BIBLIOTHEQUE DU CERIST

PREFACE xiii

rather trivial in nature. The LL(1) test is, therefore, intentionally incomplete
and the exercises request the reader to supply the missing procedures—
between 50 and 100 additional lines of coding being required. As an aid to
institutions recommending this text to their students [am willing to supply a
copy of all programs and associated test data which were written during its
preparation. Anyone interested should write to me at:

Department of Computer Science, Hertot-Watt University,
79 Grassmarket, Edinburgh, EH1 2HJ, Scotland.

A number of people have helped me to write this book, but first and foremost
my thanks go to my wife, Hilary. The reviewers, Professor A. V. Aho, Dr. D. J.
Cooke and Mrs. J. Hughes, have done an admirable job helping me to avoid
many errors and offering a number of incisive comments. Thanks also go to
Stuart Anderson, Simon Kestner, Nick Kotarski and Janet Meynell for their
help in debugging the text. The PASCAL compiler used to debug the pro-
grams was written by Dag Langhmyr; without his efforts this book could not
have been written. The assistance of Dave Cooper, John Fisher and Mike
Staker has also been invaluable in ensuring that the PASCAL system was
truly reliable. Dr. J. Welsh and Professor A. H. J. Sale have given advice on
the technicalities of PASCAL for which I am very grateful, and a number of
students have helped me by undertaking projects related to the material, |
should like to mention particularly Jim Farquhar, Bryan MacGregor and
Callum Mills. I would also like to thank Isabel Warrack for the excellent job
she did of typing the manuscript, and my home department for the facilities it
has made available to me. Finally, thanks go to Henry Hirschberg and Ron
Decent of Prentice-Hall International and to Tony Hoare for providing
encouragement at the opportune time,

Roranp C, BACKHOUSE

February, 1979

1SI430 NAd 3INO3IHLOIT4GIg

BIBLIOTHEQUE DU CERIST

S +*—Al¢~u_hu%u

GLOSSARY OF SYMBOLS

belongs to, is an element of

does not belong to

empty set

set union

set intersection

contains, is a superset of

is a subset of

not

and

or

implies

if and only if

for all

there exists

end of a proof

replacement symbol (productions)
replacement symbol in ALGOL 60 Report
replacement symbol (derivation sequences)
does not generate

generates leftmost

generates rightmost

replacement symbol (repairs)

replacement symbol (function definitions)
empty word

alternate sign in productions

refiexive and transitive closure, iteration zero or more times
transitive closure, iteration one or more times
order

slDwsKFu<>2mnwd CR®-

i

XV

1SI430 NAd 3INO3IHLOIT4GIg

BIBLIOTHEQUE DU CERIST

SYNTAX OF PROGRAMMING LANGUAGES
Theory and Practice

1SI430 NAd 3INO3IHLOIT4GIg

BIBLIOTHEQUE DU CERIST

1 FUNDAMENTALS

ALGOL 60 has lost a great deal of its popularity as a programming tool. It
never succeeded in superseding FORTRAN, and has itself been superseded
by programming languages like PASCAL and ALGOL 68. Nevertheless, I
would venture to say that the contribution of ALGOL 60 to computing
science will far outlive the contributions of PASCAL, ALGOL 68, FORTRAN
or any other programming language in existence today. The main contribution
of ALGOL 60 to computing is the standard it set for the definition of pro-
gramming languages, The ALGOL 60 report introduced a method of defining
the syntax of programming languages which has, subsequently, been used to
define almost all programming languages of any merit. The method goes
under a number of different names: Backus Normal Form, after its inventor
J. Backus; Backus—Naur Form (BNF), after Backus and the editor of the
report, P. Naur; and context-free grammars, the name suggested by N.
Chomsky who independently (and prior to Backus) applied the method to
defining the syntax of natural languages.

The definition of a programming language is normally split into two
parts—the synfax and the semantics of the language. The syntax of the
language specifies those combinations of symbols which are in the language.
For example

begin real x; x ;= 0 end
is an ALGOL 60 program, but
begin end x real; x := 0

is not. The semantics of a language specifies the “meaning” of syntactically
correct constructs in the language. In programming-language terms the
semantics specifies, for each program in the language, an input-output

1

BIBLIOTHEQUE DU CERIST

2 FUNDAMENTALS CHAP. 1

relation; that is, the output of the program given a particular input. The
ALGOL 60 report introduced a formal method of defining the syntax, but
defined the semantics informally in English. Subsequently the theory of the
syntax of programming languages, or language theory as it is commonly
called, developed rapidly and has now, more or less, stabilized. In contrast,
the theory of the semantics of programming languages has been slow to
develop and has not yet stablized. The practical significance of this disparity
is that the construction of the syntax-analysis phase of a compiler is now a
highly reliable process tackled with easc by compiler writers; on the other
hand the incorporation of code generation is much more difficult and often
subject to debate.

This book introduces the reader to context-free grammars and presents a
sample of the many theoretical results which relate to their use in defining
programming languages, The main objectives of the book are to examinc
critically the value of context-free grammars as a definitional tool and, as a
by-product, to convince the reader of the need for formal definitions and a
sound theory of programming-language definition. We shall use the “Revised
Report on the Algorithmic Language—ALGOL 607 [1.12] as the primary
source of illustrative examples. This report, whilst now quite old in comparison
to most computing-science literature (it was published in 1963}, is one of the
few classics and should be obligatory reading for all computing-science
students. We would advise the reader to have a copy on hand when reading
this text. (A list of the journals in which it has been published appears in the
bibliography at the end of this chapter.) In subsequent sections we shall refer
to the “Revised Report on ALGOL 60 or, simply, the “Revised Report™
rather than give it its full title.

How are we to evaluate the definition of a programming language? We
can obtain a number of criteria by looking at various methods of definition
in common use and examining their inadequacies.

The mcthod by which we all learnt our first programming language will
undoubtedly have been by example. This is an excellent method but, un-
fortunately, suffers from the drawback that it can never be complete, since
we can only ever see a finite number of examples. Everyone must, at some time,
have asked the question “am I allowed to . . . ?”. One should not blame
oneself for not knowing the answer, nor should one blame one’s teacher for
not having already given the information—the method of definition is at
fault. Thus our first criterion is:

Cl. The definition should provide a complete description of all aspects of the
language.

Examples are normally supplemented by verbal descriptions in order to rectify

BIBLIOTHEQUE DU CERIST

cHap, 1 FUNDAMENTALS 3

the last criticism. However English, like all natural languages, is full of
ambiguities. In programming it is extremely important that we be quite
unambiguous in everything we do. It is very important, therefore, that any
language we use is also unambiguous or, if it is ambiguous, that such ambig-
uities be easily avoided.

There are two issues involved here and so we shall introduce some
terminology to clarify them. When we define ALGOL 60 in English, there are
two languages involved—ALGOL 60, the language being defined, which is
called the object language, and English, the language used to make the
definition, which is called the metalanguage. Now, it is a requirement of the
word “definition” that the metalanguage be completely unambiguous, and
this is the paramount motivation for a formalized or mathematical definition.
However, in computing, we also impose the following requirement.

C2. Any ambiguities in the object language should he intentional and im-
mediately clear from the definition,

In the event of a misunderstanding of a programming-language feature the
compiler of the language is often referred to. A compiler does in fact define a
language precisely and unambiguously, but it is perhaps the worst method of
definition for 2 number of reasons. Firstly, there is no compiler to which the
very first implementor of a language can refer. Secondly, there is no guarantee
that:two compilers of the same language agree. Finally, the compiler intro-
duces a very large amount of machine-dependent detail which is irrelevant and
confusing to the user, In summary, therefore:

C3. The metalanguage should be easily understood and machine-independent.

There are two parties interested in the definition of a programming language
—the user and the compiler writer. Sometimes the requirements of these two
parties are conflicting and there is growing evidence that, with regard to the
semantics of a language, more than one mode of definition should be used.
However there is one respect in which the compiler writer and user have a
very strong mutual interest—the reliability of the compiler. Our final criterion
is thus:

C4. The method of definition should facilitate the systematic construction of a
compiler.

This book is based around a critical examination of the ““Revised Report on
ALGOL 60 with respect to these four criteria. The most important criterion
is C4 and the success of the BNF definition of ALGOL 60 is very much due
to the ease with which reliable syntax analyzers can now be written. For this

BIBLIOTHEQUE DU CERIST

4 FUNDAMENTALS CHAP. 1

reason discussion of techniques to facilitate the systematic construction of
syntax analyzers occupies the major part of the text. Chapters 2-6 are all
primarily concerned with this topic. Chapters 3 and 4 describe the two most
important techniques used in syntax analyzers. The reader should not be put
off by their names (“LL parsing” and “LR parsing™") which are singularly
meaningless and uninspiring. LL parsing is sometimes called parsing by
“recursive descent” and is a very natural and easy technique to use. LR pars-
ing is less natural but more powerful and is the technique normally used in
so-called “translator writing systems’” or “compiler-compilers” t.e. computer
programs which input the definition of a language and output a compiler
for that language. Chapter 2 includes preparatory material which is necessary
to understand parts of all the remaining chapters. Error analysis is an ex-
tremely important part of syntax analysis and Chaps. 5 and 6 attempt to give
it the thorough treatment it deserves. Chapter 5 develops a mathematical
model of error repair which is then applied in Chap. 6 to the design of an
error-recovery scheme.

Chapter 7 examines the “Revised Report on ALGOL 60" with respect
to criterion Cl. Surprisingly the context-free definition of ALGOL 60 does
not completely define the syntax of ALGOL 60. We have learned to live with
the limitations of the Report, but it is important to know exactly what they
are! Chapter 7 is concluded by a discussion of some of the problems which
have been caused by the lack of a formal method for completely defining the
syntax and semantics of programming languages. It is hoped that the reader
will then be motivated to go beyond this text and consult some of the references
quoted in the bibliography of Chap. 7.

This first chapter includes in Sec. 1.1 the basic definitions and notation
which are used throughout the text. Criterion C2 is then examined in Sec. 1.2
The word “ambiguous” is, of course, itself ambiguous. However in Sec. 1.2
we show how we can precisely characterize “ambiguous”™ context-free gram-
mars. A test for ambiguity is delayed (for reasons which will become evident)
until Chap. 3. The semantic ambiguities in the “Revised Report on ALGOL
607" are discussed in the final chapter.

A major emphasis in this book is on the design of efficient algorithms.
The author agrees with the view of D. E. Knuth (“Computer Science and its
Relation to Mathematics”, Computers and People, September 1974, 8-11)
that “‘computer science . . . is the study of algorithms™. To set the tone of the
remainder of the book a discussion of graph searching and its application to
finding useless productions form the final two sections of this chapter.
Although the connection of graph searching to language theory is not im-
mediately apparent, it will repay the reader to study Sec. 1.3 thoroughly. 1tis
referred to again and again in subsequent chapters and hence is one of the
meost important in the book.

