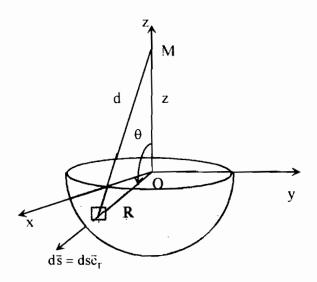

R. ABDESSEMED • M.S AGGOUNE • F.Z KADID

Cours et a


Presses de l'Université de Batna

Electrostatique

Cours et exercices

2 Sup. S

Tome I

Destiné aux étudiants des filières de Technologie, Sciences Exactes, Hygiène et Sécurité, Biomédical, Agronomie,...

Presses de l'Université de Batna

Abdessemed R.& Aggoune M.S. & Kadid F.Z.

ELECTROSTATIQUE Cours et Exercices Tome I

Comité de lecture :

Dr. Mouss L.H.
Dr. Benhaya A.
Mile Aoubid S.
Mme Khelfa S.

 $\lambda_0 \chi_{\sigma}$

Ouvrage destiné aux étudiants des filières de Technologie, Sciences Exactes, Hygiène et Sécurité, Biomédical, Agronomie, ...

© 1997, Batna University Press, All rights reserved. This Batna University Edition is part of a continuing program of paperbound textbooks especially designed for students and professional people

Avant-propos

Les technologies basées sur l'électrostatique ne cessent de se developper dans les domaines les plus diversifies et de s'adapter de plus en plus aux spécificités des processus technologiques. Leur introduction est dictée par la modernisation des conditions technico-économiques, écologiques, ...

Le but de cet ouvrage est une tentative de faciliter la compréhension des différents concepts électrostatiques et d'éliminer les automatismes qui peuvent naître d'une mauvaise assimilation afin de préserver un esprit d'initiative et de creativite.

Cet ouvrage est le résultat de réflexions sur les problèmes rencontrés par les étudiants tant sur le plan scientifique que didactique dans le domaine de la Théorie de Champs.

Ce travail a éte rédigé principalement comme outil pedagogique Par son contenu et sa présentation, il peut être d'une grande utilite aux étudiants du cursus universitaire scientifique et particulièrement aux étudiants des filières de Technologie, Biomédical, Agronomie, Hygiène et Sécurité, Sciences Exactes,...

Les auteurs expriment leurs sincères reconnaissances au Dr. Mouss L.H., Dr.Benhaya A., Mlle Aoubid S et Mme Khelfa S. pour les conseils et les remarques qui ont permis d'améliorer cet ouvrage.

Les auteurs tiennent à remercier Mme Abdessemed V., Mlle Bencib N. Mr Drid S pour leur précieuse assistance ainsi que l'ensemble des enseignants de l'Institut de Génie Electrique de l'Université de Batna pour leurs aides et encouragements.

Noms grecs	Lettres	grecques
	minuscules	majuscules
ALPHA	α	A
BETA	β	В
GAMMA	γ	Γ
DELTA	δ	Δ
EPSILON	ε	E
ZETA	ζ	Z
ETA	η	Н
THETA	θ	Θ
IOTA	i	, I
KAPPA	k	K
LAMBDA	λ	Λ
MU.	μ	M
NU	v	N
XI, KSI	ξ	==
OMICRON	0	O
PI	π	п
RHO	ρ	P
SIGMA	σ	Σ
TAU	τ	Т
UPSILON	υ	Y
PHI	ф	Φ
KHI	ά	x
PSI	Ψ	Ψ
OMEGA	ω	Ω

Table des Matières

Introduction. 7
Première partie - Théorie de champs.
I.I. Définition d'un champ9
1.2. Opération avec les champs
1.2.1. Champs scalaires
1.2.2. Champs vectoriels
I.3. Coordonnées curvilignes
1.3 1. Coordonnées curvilignes orthogonales
1.3.2. Elément de longueur, de surface et de volume
en coordonnées curvilignes
1.3.3. Expression du gradient, de la divergence et
du rotationnel en coordonnées curvilignes45
1.3.4. Transformation de coordonnées
1.4. Champs conservatifs et champs solénoïdaux
Exemples d'application 62
Deuxième partie - Champ électrostatique.
II.1. Définition du champ
II.2. Loi de Coulomb80
II.3. L'intensité et le potentiel d'un champ électrostatique82
II.4. Champ électrique, champ potentiel
d'une charge ponctuelle q87
II.5. Expressions du champ créé par
des distributions de charges90
11.6. Lignes de champ et équipotentielles94

	expression de l'intensite du champ sous forme de	ijĢ
	gradient de potentiel	106
	Flux de vecteur	
	Charment a stantial antica and a discala	
	Champ et potentiel créés par un dipôle	
	Etude des conducteurs	
	Capacité	
	Association de condensateurs	
	Champ à la surface d'un conducteur en équilibre	
	Les diélectriques - Isolants	149
	Propriétés des diélectriques	152
Н.17.	Energie électrique d'un système de charges	
	(conducteurs) - Densite d'énergie et force	
	sur les matériaux.	
	Méthode des images	194
11 19	Champ d'un axe chargé situé à proximité	
	d'un plan conducteur.	194
П.20.	Champ d'un axe chargé situé à proximité	
	d'une frontière plane entre deux diélectriques	
	de différentes permittivités	200
11 21	Champ électrostatique d'un système de	
	conducteurs cylindriques situés à proximité	
	d'un plan conducteur	203
11.22	Coefficients de potentiel	
	Premier groupe de formules de Maxwell	206
11 23.	Coefficients de capacités.	
	Deuxième groupe de formules de Maxwell	207
II 24.	Capacités partielles .	
	Troisième groupe de formules de Maxwell	.208
Exemples	s d'application.	214
-	• •	
Bibliograph	ie.	326