IST

i

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

456

BIBLIOTHEQUE DU CE

P Deransart J. Maluszynriski (Eds.)

Programming
Language Implementation
and Logic Programming

International Workshop PLILP '90
Linképing, Sweden, August 20—22, 1990
Proceedings

Springer-Verlag
Berlin Heidelberg New York London
Paris Tokyo Hong Kong Barcelona

BIBLIOTHEQUE DU CERIST

Editorial Board
D. Barstow W.Brauer P Brinch Hansen D, Gries D. Luckham
C. Moler A. Pnueli G. Seegmiiller). Steer N. Wirth

Editors

Pierre Deransart

INRIA-Rocquencourt, Domaine de Voluceau
B.P. 105, £-78153 Le Chesnay Cedex, France

Jan Maluszynski

Department of Computer and Information Science
Linképing University

5-581 83 Linkdping, Sweden

CR Subject Classtfication {1987): F4.1-2, D.31, D.3.4, F3.3,1.2.3

ISBN 3-540-53010-X Springer-Verlag Berlin Heidelberg New York
{SBN 0-387-53010-X Springer-Verlag New York Berlin Heidelberg

This work s subject to copynght. Alf nghts are reserved, whether the whole or part of the matenal
is concerned, specifically the rights of transiation, reprinting, re-use of illustrations, recilation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
ol this publication or parts therect is only permitted under the provisions of the German Copyright
Law of September 9, 1865, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under tha prosaecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990

Printad in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 — Printed on acid-Iree papsr

BIBLIOTHEQUE DU CERIST

Preface

This volume consists of the papers accepted for presentation al the Second Interna-
tional Workshop on Programming Language Implementation and Logic Programming
(PLILP 90) held in Linkdping, Sweden, August 20-22, 1990. Its predecessor was held in
Orléans, France, May 16-18, 1988 and the proceedings of PLILP '88 were published by
Springer-Verlag as Lecture Notes in Computer Science, Volume 348.

The aim of the workshop was to identify concepts and techniques used both in im-
plementation of prograrmming languages, regardless of the underlying programming para-
digm, and in logic programming. The intention was te bring togelher researchers working
in 1hese fields. The papers accepted can be divided into two categories. The first of them
presents certain ideas from the point of view of a particular class of programming lan-
guages, or eveu a particular language. The ideas presented seem to be applicable in other
classes of languages and we hope that the discussions during the workshop contribute to
clarification of this question. The second category addresses directly the problem of the
integration of various programming paradigms.

The volume includes 26 papers selected from 96 contributions submilted in response to
the Call for Papers. The contributions originated from 23 countries {Australia, Austria,
Belginm, Bulgaria, Canada, P. R. of Chiua, Denmark, Finland, France, FRG, India,
Israel, Italy, Japan, Korea, Netherlands, Poland, Rumania, Sweden, Soviet Union, UK,
USA and Yugoslavia). The selection was made by the Program Committee at its meeting
in Linképing May 26 and 27, 1990. The choice was based on the reviews made by the
Program Committee members and other reviewers selected by them. We are very grateful
to all people involved in the reviewing process. They are listed on the following pages.

We gratefully acknowledge the financial support provided by Linkoping University.

Le Chesnay, Linképing P. Deransart
June 1990 J. Maluszynski

BIBLIOTHEQUE DU CERIST

Conference Chairmen

Pierre Deransart, INRIA, Rocquencourt (France)

Jan Maluszyiiski, Linkoping University (Sweden)

Program Comimittee

Maurice Bruynooghe, Katholicke Univ. Leuven {Belgium)
Saumya Debray, Univ. of Arizona (USA)

Paul Franchi 4annettacct, Univ. of Nice (France)

Harald Ganwinger, Univ. of Dortmund (FRG)

Seif Handi, SICS, Stockholin {Sweden)

Neil 1D. Jones, Univ. of Copenhagen {Denmark)

Feliks Klu#niak, Univ. of Bristol (UK} and Warsaw Univ. {Poland)
Vadim Kotov, Academy of Sciences, Novosibirsk {USSR)
Bernard Lang, INRIA, Racquencourt {France)

Cirorgio Levi, Univ. of Pisa {ltaly)}

Gary Lindstrom, Univ. of Utah, Salt Lake City {UUSA)

Jaan Penjam, Fstonian Academy of Sciences, Tallinn (Estonia)
Masataka Sassa, Univ. of Tsukuba (Japan)

Péter Szeredi, Univ. of Bristol (UK) and SzKI {Hungary)

Martin Wirsing, Univ. of Passaun (FRG)

BIBLIOTHEQUE DU CERIST

Referees

V. Akella

V. Ambriola
L.Q. Andersen
N. Andersen
A. Arnold

I. Attali

R. Bahgat

R. Barbuti

T. Beaurnont
M. Bellia

N. Bidoit

A. Blikle

A. Bondorf

S. Bonnier

F. Boussinot
A. Bouverot
G. Bracha
J.P. Briot

A. Brogi

B. Bruderlin
M. Bruynooghe
M.A. Bulyonkov
A. Burt

A. Callebout
P. Casteran
J. Chazarain
P.H. Cheong
LA Cl’l(:rrloboed
G.D. Chirin
P. Ciancarini
D. Clément

P. Codognet
P. Cousot

D. Craeynest
J. Daels

M. Danclutto
0. Danvy
J.-F. Dazy

A. De Niel

D. De Schreye
S. Debray

P. Dembinski
B. Demoen
M. Denecker

P. Deransart

J. Despeyroux

T. Despevroux

P. Devienne

Y. Deville

J.-L. Dewéz

V. Donzeau-Gouge

H

C
A. Feng
G. Ferrand
P. Franchi Zannettacci
U. Fraus

P. Fritzson

I. Futé

M. Gabbrielli

J. Gallagher

G. Gallo

H. Ganzinger

M. Gengenbach

L. George

G. Ghelli

R. Giegerich

C. Gomard

J. Goossenacrts
G. Gopalakrishnan
8. Gregory

K. Grue

A. Guendel

[. Guessarian

G. Gupta

M. Hanus

A. Haraldsson

T. Hardin

S. Haridi

L. Hascoet

B. lHausman

R. Hennicker

P. Van Hentenryck
P. Hill

A. Hirschowitz
K.H. Holm

C.K. Holst

BIBLIOTHEQUE DU CERIST

1. Holyer

H. Hussmann
S. Janson

(. Janssens
T.P. Jensen

N.D. Jones

M. Jourdan
K. Kaijiri

F. Kluzniak
Komorowski

. Kotov
Kreuger

. Krieg-Brickner
. Kuchcinski

. Lang
Lebegue

. Lecarme

. Legeard

. Leroy

. Levi

-J. Lévy

V. Lextrait
(. Lindstrom
A. Lomp

B. Lorho

E. Madeleine
D. Maier

K. Malmkjaer
J. Maluszynski
L. Maranget
A. Marien

M. Martelli
B. Mayoh

M. Méristé
M. Mitkowska
T. Mogensen
J. Montelius
P.DD. Mosses
T. Muchnick
A Mulkers

O POoORE RW T~

L

V.A. Nepomniaschy

F. Nickl
M. Nilsson
U. Nilsson
T. Nishino
T. Qgi

Vi

C. Palamidessi
D. Parigot

M. Patei

J. Penjam

K. Petersson
L. Pottier

A. Quéré

S. Raina

P. Richard

M. Rasendahl
R. Rousscaun
M. Rueher

V. Sabelield
D. Sahlin

M. Sassa

Y. Sato

R. Schifers
M. Schwartzbach
P. Sestoft

J, Shepherdson
Y. Shincoda
M. Simi

. Bj6land

. Spndergaard
Sosic

. Studzinski
Szeredi
Tamura
Tan

Tuarini

. Verschaetse
. Waldmann
Wang

. Weemeeuw
. Weis

. Wertz

R. Wilhelm

J. Winkowski
M. Wirsing

Y. Yamashita
. Yeh

cCHmsOdRTMOATR T TS

BIBLIOTHEQUE DU CERIST

Table of Contents

Implementation of Term Rewriting
Implementing Parallel Rewriting
Claude Kirchner and Patrick Viry 1

Compilation of Narrowinyg

Andy Mick . o e 18

Algeorithmic Programming
Inference-Based Overloading Resolution for ADA
Franz-Josef Grosch and Gregor Snelting 30

An Approach to Verifiable Compiling Specification and Prototyping
Jonathan Bowen, He Jifeng and Parttosh Pendye 0., 45

Bug Localization by Algorithmic Debugging and Program Slicing
Mariam Kamkar, Nahid Shehmehri and Peler Fritzson i i 60

Constraint Logic Programming
A Constraint Logic Programming Shell
Pierre Lim and Peter J. Stuckey e e 75

Modifying the Simplex Algorithm to a Constraint Solver
Juhani Jaakola o 39

Implementiing a Meta-Logical Scheme
Pierre Lim end Dawid Movley, P 106

Implementation of Logic Programming
The Vienna Abstract Machine
Andreas Krall and Ulrich Newmerkel . o 121

A New Data Structure for Implementing Extensions to Prolog
Serge Le Huttouze ... o e 136

Logic Programming

Finding the Least Fixed Point Using Wail-Declarations in Prolog
Dan Sahtin

Elementary Logic Programs

Paul Tarau and Michel Boyer e 159
A New Presburger Arithmetic Decision Procedure Based on Extended

Prolog Execution

Laurent Fribourg .. 174

BIBLIOTHEQUE DU CERIST

il

Stalic Analysis

Reasoning About Programs with Effects

fon Mason and Cavelyn Talcoll 189
Towards a Characterization of Termination of Logic Programs

B. Wang and R.K. Shyamasundar i i 204
Static Type Analysis of Prelog Procedures for Ensuring Correctness

Pierre De Boeck and Baudouwin Le Charlier oo .. 222

Functional Programming

Integrating Strict and Lazy Evaluation: the Ay-calculus

Andrea Asperli . e 238
Efficient Dala Representation in Polymorphic Languages
A auter L eroy e 255

Abstract Interpretation

A Logic-Based Approach to Data Flow Analysis Problems

S. Sagiv, N. Francez, M. Rodeh and R. Wilhelm 297
Systematic Semantic Approximations of Logic Programs
Ulf Nilgsom, O O 293

Interprocedural Abstract Interpretation of Block Structured Languages
with Nested Procedures, Aliasing, and Recnrsivity
Francois Bourdoncle 307

On the Automatic Generation of Events in Delta Prolog
Veroniek Dumortier and Maurice Bruynooghe (..., 324

Implementation of Pattern Matching

Compilation of Non-Linear, Second Order Patterns on S-Expressions

Christian QUEIMIEC ... i et it e e 340
Pattern Matching in a Functional Transformation Language using Treeparsing
Christian Ferdinand e 358

Integration of Logic Programming and Functional Programming
Logic Programming within a Functional Framework
Anionio Brogi, Paclo Mancarella, Dino Pedreschi and Franco Turini 372

Compiling Logic Programs with Equality
Michael Hanus 387

BIBLIOTHEQUE DU CERIST

Implementing Parallel Rewriting*

Claude Kirchner Patrick Viry
INRIA Lorraine & CRIN
615 Rue du Jardin Botanique, BP101
54600 -Villers les Nancy, France
E-mail: {ckirchner,viry }@loria.crin.fr

Abstract

We present in this paper a technique for the implementation of rewriting on parallel archi-
tectures. Rewriting iz a computation paradigm that allows to implement directly an equational
specification {eg. an abstract data type). Much work has been done about theoretical aspects
of rewriting, which has made this technique of practical interest for programming. The next
step for rewriting to be nsed in practice is now to provide an efficient implementation for it. We
present here an implementation technique that enables ta take advantage of the computational
power of lonsely-coupled parallel architectures with any grain size. Restricted to one processor,
the efficiency of this technique is in the same order of magnitude as those of functional languages
such as interpreted LISP or ML, and we expect an almost linear increase of the efficiency when
increasing the number of processors. 1t is important to notice that this approach allows par-
allel execution of programns direclly from their equationally axiomatized specification, without
having to make explicit at all the potential parallelism, thus providing a simple and precise
operational semantics,

1 Introduction

Rewriting is a computational paradigm that is now widely recognized and used. As a mathematical
object, rewrite systems have been studied for more than ten years, and the reader can find in [16]
and [2] general surveys deseribing properties and applications either in theorem proving or in
programming languages. Rewriting implementations on sequential machines are numerous and a
survey of most of them is made in [12].

Rewriting for computing has been developing for several years [1]. It is in particular used as
an operational semantics in many programming languages like OBJ [4,5], ASF {11] or SLOG [3]
among many others. It is thus crucial, in order to get realistic performances, to have efficient
implementations of the rewriting concept. Several alternatives have been explored. A first one is
to compile rewriting cither using abstract machines like in [15,19] or using a functional language like
in [13,17]. A second one (possibly complementary), on which this paper is based, is to implement
rewriting on parallel machines. This is not » fashion effect: rewriting i1s teally a computational
paradigm which specifies the actions and not the control {but strategies may be added if explicit
control is needed). Moreover for linear rules the computations needed to apply a rule are completely
local. It is thus a paradigm which can be directly implemented on a parallel machine and has
the advantage of freeing the programmer of any explicit parallelization directive to the program.
Morcover it allows cliinination of the intermediate steps between the program description and its
implementation: an implementation of rewriting is an implementation of an operational semantics

*'I'his research has been partially supported by the GRECEO de Programmalion of CNRS, the PBasic Research
Workshop COMPASS of the CEC and contract MRT 38P0423

BIBLIOTHEQUE DU CERIST

of abstract data types. This is already a mfain concept in the rewrite rule machine project (6,8]
whose model of computation is conenrrent rewriting [7]. The goal of this project was to design a
hardware with a rewrite rules machine code. Qur purpose here is quite different, since it consists
in implementing rewriting on ezisfing parallel machines like the connection machine or transputer
based machines.

In order to implement term rewnting, several stcps arc mnvolved. Let us take as example the
following rewrite program specifying the computation of the length of a list of integers:

op mil —+ListInt | length(nil) -+ 0
op - :Int ListInt—ListInt | length(n.L} — length(L)+1
op length: ListInt -—Nat

where we assume known the usual operations on integers. These rules will be directly used to com-
pute the length of the list (3.(~4.(3.ril))) by applying the rules on the tern length(3.(—4.(3.ni)}).
No intermediate compilation neither of the term nor of the rewrite rules will be necessary.

In order to perform these computations, a pattern should first be mateled against the term to
be reduced. For example length(n.L) matches the term length(3.(—4.(3.ni1)}). and the substituiion
allowing the match, in this case {n — 3,L — (—=4.(3.n:]))}, is computed. Then the right-hand
side of the rule is insfanticted with the match substitution: here lemgth{L) + 1 is instantiated
into length{ —4.(3.nil)) + 1. Finally the redex should be repluiced by the instantiated right-hand
side: in the example length(3.(—4.(3.ndl})} is replaced by lengih(—4.(3mil)) 4- 1. And the same
process can be iterated until an irreducible term may be obtained. Notice that in this example, the
computations are performed only locally since the rewriting systemn is left linear. i.e. the variables
occeur only once in all the left-hand sides of the rewrite rules.

The crucial idea is that if one wants to reduce the term length(2.(3.nil)) +length(3.(—4.(3.n:1)}),
the computations can be performed independently on the subterms length(2.(3.n:)) and
length(3.(—4.(3.nil)}). Moreover, since no control is a priori given in a specification based on
rewrite systems, the hmplementation can freely use the inherent parallelism contained, but not
explicitly specified, in the rewrite program: 4 rewrite program s a perallel specification. In this
paper we show how to get an implementation of rewriting that exploits this remark. Note that
stratcgies can be specially designed for controlling parallelism, see 7).

Let us sumnmarize what we call paraliel reuniting. The first idea is to use as model of parailel
rewriting the notion of concurrent rewriting us defined in [7). Concurrent rewriting, that we will
precisely define in the next section, is the relation describing simultencous rewrite of a non-empty
set of disjoint redexes. But enforcing this in the implementation will require some synchronization,
operation that we would like to forbid as much as possible. Thus, we consider that the processors
independently detect redexes throughout the term and reduce them without synchronization. For
this to be correct, datas should be represented as DAGs ({directed acyclic graphs) in order to
{1) allaw rewritings to occur everywhere even on non-disjoint redexes, (2) allow the substitutions
computed at matching time to subsist after other (independent) rewritings, Moreover this DAG
structure allows the sharing of common parts of the term. so that its representation is more compact
and computation can be shared. Since we would like the computation te occur everywhere in the
terrn, we consider each node of the DAG to be a process communicating with the other processes
through channels following the edges of the DAG.

The second key ides is to perform matching, i.e. detection of redexes, using only local informa-
tions that are not necessary up-to-date with respect to the other ongoing reductions. This point
is developed in Section 3, based on a parallel version of the bottom-up matching algorithm of [14].
The computations remain local only when the lefi-hand side of the rules are linear. When not,
we postpone their applications after all linear computations have becn performed, as deseribed in
Section 4.2.

Section 4 precises how parallel rewriting, built from the two main ideas above, is a correct
implementation of concurrent rewriting. This leads to the implementation deseribed in Section 5.
The program runs currently on one processer with performances eight to ten times slower than

BIBLIOTHEQUE DU CERIST

interpreted LISP, but it iz not at all optimized, and we expect an almost linear increase in terms
of the number of processors.

We do not recall the formal definitions of the concepts needed in rewriting systems and refer
to 12,16,7}. In particular we suppose the reader familiar with the notions of term, pesition {or
oceurrence), equations, overlap.

2 Concurrent Rewriting

The concurrent rewriting relation on terms has been introduced in [7] to formalize the idea that
many redexes in a term may be rewritten simultaneously while keeping the semantics of rewriting.

Let us give an example: the following term may be rewritten by the right-associativity rule
(z+4y)+2 — z +(y+ 2) at the three positions (redexes) numbered 1, 2, 3. We would like to
rewrite in a single step the redexes 1 and 3, giving the same result as rewriting successively the
positions 1 then 3, or 3 then 1. But we can see that it would have no sense to rewrite in a single
step 1 and 2, because after rewriting redex I, the redex 2 disappears.

+
/1’ \+ ’
Y e d/\P +
7N
a =3 +
! a/+\-+- d/\e
: ‘ /\
\ 2 e/ © [
d
z -+
AN

So in order to formally define concurrent rewriting, we have to introduce the uetion of non-
overlapping set of redexes:

Definition 1 Lett be & lerm and R a term rewriting system. Let R(E) = {(p:, hi, 1)) be the set of
ail the redezes in t under R, 1.e.

(pivli,m) € R(t) & L — ri ¢ R and 37 such that §,, = o(l;)

4 subset W of R(t) is said to be nonoverlapping iff for any redezes (p,1,r) and (p" V. v} in
w

o pand p' are incomparable (none 13 & subsiring of the other)

¢ ot pis o subsiring of ¢’ end there ecists o veriable posttion ¢ in ! such that p.g is ¢ substring
of pf

o if 1 iz non-linear for the variable £ and sf there exists o position g of z in ! such that p’ = pg.r
for some v, then (pg’ry € W for all posstions ¢’ of x in [,

The third condition comes from the fact that if a non left-lincar rule is applyable, then some
subterms have to be equal. If we apply this rule concurrently with some others, this equality
must be preserved or concurrent rewriting would not be correct, so we have to perform the same
rewritings in these equal subterms.

We can now define the concurrent rewriting relation: let A{t) be the set of all nonoverlapping
subsets of redexes in L.

