
" \,

Lectu re Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

456

P. Deransart J. Mafuszynski (Eds.)

Programming
Language Implementation
and Logic Programming
International Workshop PLiLP '90
Linkoping, Sweden, August 20-22, 1990
Proceedings

Springer-Verlag
Berlin Heidelberg New York London

Paris Tokyo Hong Kong Barcelona

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editors

Pierre Deransart
INRIA-Rocquencourt, Domaine de Voluceau
B.P. 105, F-78153 Le Chesnay Cedex, France

Jan Maluszynski
Department of Computer and Information Science
Linkiiping University
S-581 83 Linkiiping, Sweden

' .. ~ ..

• 1--;..).,

, ~.-
/

,
.1

/

CR Subject Classification (1987): F.4.1-2, 0.3.1, 0.3.4, F.3.3, 1.2.3

ISBN 3-540·53010-X Springer·Verlag Berlin Heidelberg New York
ISBN 0·387-53010-X Springer·Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whetherthe whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright tee must always be
paid. Violations fall under the prosecution aet of the German Copyright Law.

© Springer·Verlag 8erlin Heidelberg 1990
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140·543210 - Printed on acid·lree paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This volume consists of the papers accepted for presentation at the Second Interna
tional Workshop on Programming Language Implementation and Logic Programming
(PLILP '90) held in Linkoping, Sweden, August 20-22, 1990. Its predecessor was held in
Orléans, France, May 16-18, 1988 and the proceedings of PLILP '88 were published by
Springer-Verlag as Lecture Notes in Computer Science, Volume 348.

The aim of the workshop was to identify concepts and techniques used both in im
plementation of programming languages, regardless of the underlying programming para
digm, and in logic programming. The intention was to bring together researchers working
in these fields. The papers accepted can be divided into two categories. The first of them
presents certain ideas from the point of view of a particular class of programming lan
guages, or even a particular language. The ideas presented seem to be applicable in other
classes of languages and we hope that the discussions during the workshop contribute to
clarification of this question. The second category addresses directly the problem of the
integration of various programming paradigms.

The volume includes 26 papers selected from 96 contributions submitted in response to
the Cali for Papers. The contributions originated from 23 countries (Australia, Austria,
Belgium, Bulgaria, Canada, P. R. of China, Denmark, Finland, France, FRG, India,
Israel, Italy, Japan, Korea, Netherlands, Poland, Rumania, Sweden, Soviet Union, UK,
USA and Yugoslavia). The selection was made by the Program Committee at its meeting
in Linkoping May 26 and 27, 1990. The choice was based on the reviews made by the
Program Commit tee members and other reviewers selected by them. We are very grateful
to ail people invol ved in the reviewing process. They are listed on the following pages.

We gratefully acknowledge the financial support provided by Linkoping University.

Le Chesnay, Linkoping
June 1990

P. Deransart
J. Maluszynski B

IB
LI

O
TH

E
Q

U
E

 D
U

 C
E

R
IS

T

Conference Chairmen

Pierre Deransart, INRIA, Rocquencourt (France)

Jan Maluszynski, Linkiiping University (Sweden)

Program Committee

Maurice Bruynooghe, Katholieke Univ. Leuven (Belgium)

Saumya Debray, Univ. of Arizona (USA)

Paul Franchi Zannettacci, Univ. of Nice (France)

Harald Ganzinger, Univ. of Dortmund (FRG)

Seif Haridi, SICS, Stockholm (Sweden)

Neil D. Jones, Univ. of Copenhagen (Denmark)

Feliks Kluzniak, Univ. of Bristol (UK) and Warsaw Univ. (Poland)

Vadim Kotov, Academy of Sciences, Novosibirsk (USSR)

Bernard Lang, INRIA, Rocquencourt (France)

Giorgio Levi, Univ. of Pisa (Italy)

Gary Lindstrom, Univ. of Utah, Salt Lake City (USA)

Jaan Penjam, Estonian Academy of Sciences, Tallinn (Estonia)

Masataka Sassa, Univ. of Tsukuba (Japan)

Péter Szeredi, Univ. of Bristol (UK) and SzKI (Hungary)

Martin Wirsing, Univ. of Passau (FRG)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Referees
v. Akella P. Deransart
v. Ambriola J. Despeyroux
1.0. Andersen T. Despeyroux
N. Andersen P. Devienne
A. Arnold Y. Deville
1. Attali J.-1. Dewèz
R. Bahgat V. Donzeau-Gouge
R. Barbuti W. Drabent
T. Beaumont H. Dybkjaer
M. Bellia C. Fecht
N. Bidoit A. Feng
A. Blikle G. Ferrand
A. Bondorf P. Franchi Zannet tacci
S. Bonnier U. Fraus
F. Boussinot P. Fritzson
A. Bouverot 1. Fut6
G. Bracha M. Gabbrielli
J.P. Briot J. Gallagher
A. Brogi G. Gallo
B. Bruderlin H. Ganzinger
M. Bruynooghe M. Gengenbach
M.A. Bulyonkov L. George
A. Burt G. Ghelli
A. Callebout R. Giegerich
P. Casteran C. Gomard
J. Chazarain J. Goossenaerts
P.H. Cheong G. Gopalakrishnan
1. Chernoboed S. Gregory
G.D. Chinin K. Grue
P. Ciancarini A. Guendel
D. Clément 1. Guessarian
P. Codognet G. Gupta
P. Cou sot M. Hanus
D. Craeynest A. Haraldsson
J. Daels T. Hardin
M. Danelutto S. Haridi
O. Danvy 1. Hascoet
J.-F. Dazy B. Hausman
A. De Niel R. Hennicker
D. De Schreye P. Van Hentenryck
S. Debray P. Hill
P. Dembinski A. Hirschowitz
B. Demoen K.H. Holm
M. Denecker C.K. Holst

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

I. Holyer
H. Hussmann
S. Janson
G. Janssens
T.P. Jensen
N.D. Jones
M. Jourdan
K. Kaijiri
F. Kluzniak
J. Komorowski
V. Kotov
P. Kreuger
B. Krieg-Brückner
K. Kuchcinski
B. Lang
P. Lebègue
O. Lecarme
B. Legeard
x. Leroy
G. Levi
J.-J. Lévy
V. Lextrait
G. Lindstrom
A. Lomp
B. Lorho
E. Madeleine
D. Maier
K. Malmkjaer
J. Maluszynski
L. Maranget
A. Marien
M. Martelli
B. Mayoh
M. Méristé
M. Milkowska
T. Mogensen
J. Montelius
P.D. Mosses
T. Muchnick
A. Mulkers
V.A. Nepomniaschy
F. Nickl
M. Nilsson
U. Nilsson
T. Nishino
T.Ogi

VI

c. Palamidessi
D. Parigot
M. Patel
J. Penjam
K. Petersson
1. Pottier
A. Quéré
S. Raina
P. Richard
M. Rosendahl
R. Rousseau
M. Rueher
V. Sabelfeld
D. Sahlin
M. Sassa
Y. Sato
R. Schiifers
M. Schwartzbach
P. Sestoft
J. Shepherdson
Y. Shinoda
M. Simi
T. Sjôland
H. S!1Indergaard
R. Sosic
K. Studzinski
P. Szeredi
N. Tamura
L. Tan
F. Turini
K. Verschaetse
U. Waldmann
J. Wang
P. Weemeeuw
P. Weis
U. Wertz
R. Wilhelm
J. Winkowski
M. Wirsing
Y. Yamashita
D. Yeh

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Implementation of Term Rewriting

Implementing Parallel Rewriting

!
1
1.

Claude Kirchner and Patrick Viry .. 1

Compilation of Narrowing
Andy Mück ... 16

Algorithmic Programming

Inference-Based Overloading Resolution for ADA
Franz-Josef Grosch and Gregor Snelting ... 30

An Approach to Verifiable Compiling Specification and Prototyping
Jonathan Bowen, He Jifeng and Paritosh Pandya 45

Bug Localization by Algorithmic Debugging and Program Slicing
Mariam Kamkar, Nahid Shahmehri and Peter Fritzson 60

Constraint Logic Programming

A Constraint Logic Programming Shell
Pierre Lim and Pete,- J. Stuckey .. 75

Modifying the Simplex Algorithm to a Constraint Solver
Juhani Jaakola .. 89

Implementing a Meta-Logical Scheme
Pierre Lim and David Morley .. 106

Implementation of Logic Programming

The Vienna Abstract Machine
Andreas [(rall and Ulrich Neumerkel

A New Data Structure for Implementing Extensions to Prolog

121

Serge Le Huitouze .. 136

Logic Programming

Finding the Least Fixed Point U sing Wait-Declarations in Prolog
Dan Sah/in 151

Elementary Logic Programs
Paul Tarau and Michel Boyer .. 159

A New Presburger Arithmetic Decision Procedure Based on Extended
Prolog Execution
Laurent Fribourg .. . 174

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Static Analysis

Reasoning About Programs with Effects
Jan Mason and Caralyn Talcott .. 189

Towards a Characterization of Termination of Logic Programs
B. Wang and R.K. Shyamasundar 204

Static Type Analysis of Prolog Procedures for Ensuring Correctness
Pierre De Boeck and Baudouin Le Charlier 222

Functional Programming

Integrating Strict and Lazy Evaluation: the À,J-calculus
Andrea Asperti .. 238

Efficient Data Representation in Polymorphic Languages
Xavier Leray . .. 255

Abstract Interpretation

A Logic-Based Approach to Data Flow Analysis Problems
S. Sagiv, N. Francez, M. Rodeh and R. Wilhelm 277

Systematic Semantic Approximations of Logic Programs
Ulf Nilsson .. 293

Interprocedural Abstract Interpretation of Block Structured Languages
with Nested Procedures, Aliasing, and Recursivity
François Bourdoncle ... 307

On the Automatic Generation of Events in Delta Prolog
Veroniek Dumodier and Maurice Bruynooghe 324

Implementation of Pattern Matching

Compilation of Non-Linear, Second Order Patterns on S-Expressions
Christian Queinnec ... 340

Pattern Matching in a Functional Transformation Language using Treeparsing
Christian Ferdinand 358

Integration of Logic Programming and Functional Programming

Logic Programming within a Functional Framework
Antonio Bragi, Paolo Mancarella, Dino Pedreschi and Franco Turini 372

Compiling Logic Programs with Equality
Michael Hanus 387

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Implementing Parallel Rewriting*

Claude Kirchner Patrick Viry
INRIA Lorraine & CRIN

615 Rue du Jardin Botanique, BP101
54600·Villers les Nancy, France

E-mail: {ckirchner.viry}@loria.crin.fr

Abstract

We present in this paper a technique for the implementation of rewriting on parallel archi
tectures. Rewriting is a computation paradigm that allows ta implement directly an equational
specification (eg. an abstract data type). Much work has been done about theoretical aspects
of rewriting, which has made this technique of pra.ctical interest for programming. The next
step for rewriting ta be used in practice is now to provide an efficient implementation for it. We
present here an implementation technique that enables ta take advantage of the computational
power of loosely-coupled para11el architectures with any grain size. Restricted ta one processor,
the efliciency of this technique is in the same or der of magni tude as those of functionallanguages
such as interpreted LISP or ML, and we expect an almost linear increase of the efficiency when
increasing the number of processors. It is important to notice that this approach allows par
ailel execution of programs directly from their equationally axiomatized specification, without
having to make explicit at ail the potential parallelism, thus providing a simple and precise
operation al semantics.

1 Introduction

Rewriting is a computational paradigm that is now widely recognized and used. As a mathematical
object, rewrite systems have been studied for more than ten years, and the reader can find in [16J
and [2J general surveys describing properties and applications either in theorem proving or in
programming languages. Rewriting implementations on sequential machines are numerous and a
survey of most of them is made in [12J.

Rewriting for computing has been developing for several years [lJ. It is in particular used as
an operational semantics in many programming languages like OBJ [4,5J, ASF [11J or SLOG [3J
among many others. It is thus crucial, in order to get realistic performances, to have efficient
implementations of the rewriting concept. Several alternatives have been explored. A first one is
to compile rewriting either using abstract machines like in [15,19J or using a functionallanguage like
in [13,17J. A second one (possibly complementary), on which this paper is base d, is to implement
rewriting on parallel machines. This is not a fashion eifect: rewriting is really a computational
paraœgm which specifies the actions and not the control (but strategies may be added if explicit
control is needed). Moreover for linear rules the computations needed to apply a rule are completely
local. It is thus a paradigm which can be directly implemented on a parallel machine and has
the advantage of freeing the programmer of any explicit parallelization directive to the program.
Moreover it allows elimination of the intermediate steps between the program description and its
implementation: an implementation of rewriting is an implementation of an operational semantics

·This research has been partially supported by the GRECO de Programmation of CNRS, the Basic Research
Workshop COMPASS of the CEC and contract MRT 89P0423.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

of abstract data types. This is already a main concept in the rewrite rule machine project [6,8J
whose model of computation is concurrent rewriting [7J. The goal of this project was to design a
hardware with a rewrite rules machine code. Our purpose here is quite different, since it consists
in implementing rewriting on existing parallel machines like the connection machine or transputer
based machines.

In order to implement term rewriting, several steps are involved. Let us take as example the
following rewrite program specifying the computation of the length of a list of integers:

op nil --+ListInt length(nil) -+ 0
op : Int, ListInt--+ListInt length(n.L) -+ length(L) + 1
op length: ListInt --+N at

where we assume known the usual operations on integers. These rules will be directly used to com
pute the length of the list (3.(-4.(3.nil))) by applying the rules on the term length(3.(-4.(3.ni/))).
No intermediate compilation neither of the term nor of the rewrite rules will be necessary.

In order to perform these computations, a pattern should fust be matched against the term to
be reduced. For example length(n.L) matches the term /ength(3.(-4.(3.ni/))), and the substitution
allowing the match, in this case {n 3,L (-4.(3.ni/))}, is computed. Then the right-hand
side of the rule is instantiated with the match substitution: here /ength(L) + 1 is instantiated
into /ength(-4.(3.ni/)) + 1. Finally the redex should be rep/aced by the instantiated right-hand
side: in the example /ength(3.(-4.(3.nil))) is replaced by /ength(-4.(3.ni/)) + 1. And the same
process can be iterated until an irreducible term may be obtained. Notice that in this example, the
computations are performed only locally since the rewriting system is left linear. Le. the variables
occur only once in ail the left-hand sides of the rewrite rules.

The crucial idea is that if one wants to reduce the term length(2.(3.ni/))+/ength(3.(-4.(3.nil))),
the computations can be performed independently on the subterms /ength(2.(3.ni/)) and
length(3.(-4.(3.nil))). Moreover, since no control is a priori given in a specification based on
rewrite systems, the implementation can freely use the inherent parallelism contained, but not
explicitly specified, in the rewrite program: A rewrite program is a paral/el specification. In this
paper we show how to get an implementation of rewriting that exploits this remark. Note that
strategies can be specially designed for controlling parallelism, see [7J.

Let us summarize what we cali parallel rewriting. The first idea is to use as mode! of parallel
rewriting the notion of concurrent rewriting as defined in [7J. Concurrent rewriting, that we will
precise!y define in the next section, is the relation describing simultaneous rewrite of a non-empty
set of disjoint redexes. But enforcing this in the implementation will require sorne synchroruzation,
operation that we would like to forbid as much as possible. Thus, we consider that the processors
independently detect redexes throughout the term and reduce them without synchronization. For
this to be correct, datas should be represented as DAGs (rurected acyclic graphs) in order to
(1) allow rewritings to occur everywhere even on non-disjoint redexes, (2) allow the substitutions
computed at matching time to subsist after other (independent) rewritings. Moreover this DAG
structure allows the sharing of common parts of the term, so that its representation is more compact
and computation can be shared. Since we would like the computation to occur everywhere in the
term, we consider each node of the DAG ta be a process communicating with the other pro cesses
through channels following the edges of the DAG.

The second key idea is to perform matching, i.e. detection of redexes, using only local informa
tions that are not necessary up-to-date with respect to the other ongoing reductions. This point
is developed in Section 3, based on a paralle! version of the bottom-up mat ching algorithm of [14J.
The computations remain local only when the left-hand side of the rules are linear. When not,
we postpone their applications after alllinear computations have been performed, as described in
Section 4.2.

Section 4 precises how parallel rewriting, built from the two main ideas above, is a correct
implementation of concurrent rewriting. This leads ta the implementation described in Section 5.
The program l'uns currently on one processor with performances eight ta ten times slower than

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

interpreted LISP, but it is not at all optimized, and we expeet an almost linear increase in terms
of the number of processors.

We do not recall the formal definitions of the concepts needed in rewriting systems and refer
to [2,16,7J. In particular we suppose the reader familiar with the notions of term, position (or
occurrence), equations, overlap.

2 Concurrent Rewriting

The concurrent rewriting relation on terms has been introduced in [7J to formalize the idea that
many redexes in a term may be rewritten simultaneously while keeping the semantics of rewriting.

Let us give an example: the following term may be rewritten by the right-associativity rule
(x + y) + z --> x + (y + z) at the three positions (redexes) numbered 1, 2, 3. We would like to
rewrite in a single step the redexes 1 and 3, gjving the same result as rewriting successively the
positions 1 then 3, or 3 then 1. But we can see that it would have no sense to rewrite in a single
step 1 and 2, because after rewriting redex 1, the redex 2 disappears.

a b

/"
/\ /\

a ± ct e
/\

b c

So in order to forrnally define concurrent rewriting, we have to introduce the notion of non
overlapping set of redexes:

Definition 1 Let t be a term and Ra term rewriting system. Let R(t) = {(Pi, li, ri)} be the set of
al! the redexes in t under Ri i. e.

W,

(Pi, li, ri) E R(t) {} li --> ri E Rand 3a such that tlp; = a(li)

A subset W of R(t) is said ta be nonoverlapping iff for any redexes (p, l, r) and (p', l', r') in

• p and p' are incomparable (none is a substring of the other)

• or p is a substring of p' and there exists a variable position q in 1 such that p.q is a substring
ofp'

• if 1 is non-linear for the variable x and if there exists a position q of x in 1 such that p' = p.q.r
for some r, then (p.q'.r) E W for al! positions q' of x in l.

The third condition cornes from the faet that if a non left-linear rule is applyable, then sorne
subterms have to be equal. If we apply this rule concurrently with sorne others, this equality
must be preserved or concurrent rewriting would not be correct, 80 we have to perform the sarne
rewritings in these equal subterms.

We can now define the concurrent rewriting relation: let ~(t) be the set of al! nonoverlapping
subsets of redexes in t.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

