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Preface

The ESPRIT Basic Research Action 3006, CONCUR (Theories of Concurrency: Unification
and Extension) started on September 1, 1989. The principal aims of the action are to explore
the relationships among the different approaches to algebraic concurrency theory, and to
develop a formalism applicable 1o a wide range of case studies. Verification of concumrent or
distributed systems has up till now been undertaken only on a very smali scale, in a
haphazard way, and with a multitude of techniques and formal theories. For industrial
applicability, it is essential that some unity emerge from the competing theories of
concurrency, and that the verification process be supported by reliable software tools.
Coordinating partner of CONCUR is CWI (Centre for Mathematics and Computer Science)
in Amsterdam, the other partners are the Universities of Edinburgh, Oxford, Sussex and
Amsterdam, INRIA in Sophia Antipolis, and the Swedish Institute for Computer Science.
The conference CONCUR'90, hosted by CWI with the help of the University of
Amsterdam, marks the end of the first year of CONCUR, In response to the call for papers,
54 papers were submitted. Of these, 31 were selected for presentation by the program
committee, The selected papers appear in these proceedings, together with two articles by
invited speakers. Unfortunately, due to lack of time, the other three invited speakers are only
represented by abstracts.

The editors want to thank the members of the program commitiee with all their subreferees,
and members of the organizing commitiee for all their efforts.

Amsterdam, July 1990
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Partial Order Semantics of Concurrent Programs

Eike Best
Inatitut fiir Informatik, Universitat Hildesheim, D-3200 Hildesheim

{Abatract of an Invited Lecture at CONCUR.'90)

So—called arbitrary interleaving has traditionally been a popular method for describing the possible be-
haviouts of a concurrent program (viz., ita operational semantics). This method has been very succesaful,
both because it is generally easy to formalise and because many (one might argue: all} interesting proper-
ties of a concurrent program can be expressed and analysed nsing interleaved sequences. Partially ordered
sets have been suggested as an alternative description method. The concurrency that may be present in
the behaviour of a concarrent program can be expressed in the associated partial order by means of the
absence of any ordering. In addition and relating to these two approaches, a wide spectrum of intermediate
cotions, variations and extensions have also been investigated. There have occasionally heen controversial
discussions relating to the different possible ways of defining the operational semantics of concurrent pro-
grams. Sometimes, the interleaving approach has been rejected out of hand because it does not represent
concurrency. At other times, the partial order approach has been rejected because it seemed techaically
too cumbersome to formalise.

I would like to argue in this talk that both interleaving semantics and partial order semantice {and any
other appropriate semantics) can - and should, whenever appropriate — be defined peacefully side by side.
In this view, the important problems becume the (ollowing ones:

(i) What is the nicest way of formalising azy of the desired semantics?

(i) What is the precise relationship between the two (or more) semantics?

il ich 18 the most appropriate semantica to analyse a given property, or class of properties!
iii) Which is th pri i al gi cl f properties?

A well-known inatance of problem (iii) is the notion of fairness: while interleaving scmaatics soffices to
express various interesting fairmess notions, it turns oot that some of them can be defined and analysed
more lucidly in the partial order framework®.

Recent investigations have produced ample knowledge about the questions (i)-(ili) claimed to be important
above in the framework of fundamental models of concurrent systems, such as Bergstra/Klop's ACP,
Hoare's CSP, Milner's CCS, Petri's Nets and others. These basic models are immediately useful to describe
the standard flow of control of concurrent programs. As a rule, they need to be extended for the purpose
of describing other important features of concurrent programs, such as the propagation of data values
and non-standard control flow constraints, as might be induced by a pricrity operator or by the use of
timers; in the sequel, these other features will be called ‘non-basic’. In existing concurrent programming
languages, non-basic features tend to play a prominent réle; in particular, the correctness of programs
writlen in languages with such features will in general depend crucially on their proper use.

This talk explores the partial order semantics of concurrent programs not only in the presence of standard
flow of control, but also taking into account data structures, a priority construct and timing aspects. The
following particular instances of the more gencral questions identified above will be discussed:

(i) What ix a satisfactory way of defining a pariial order semantics, paying particular attention to the
non basic features?

{i1) What is the relation to interleaving semantics, again with particular regard to the non-basic features?
{iii} What class of properties is likely to be amenable to analysis in terms of partial orders?

The discussion will be motivated and guided by an investigation underway within the Esprit Basic Reseazch
Action No.3148 DEMON (Design Methods Based on Nets}, This study has two aims: {a) to give a partial
order semantics to occam-2 using the Petri net model?, and (b) to design a programming notation with a
Petri net semantics,

!"The transcription of this talk will contain pointers to the literature.
*occam-2 has all of the basic and non-basic features mentioned above,
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SCONE : A SIMPLE CALCULUS OF NETS

Roberto Gorrieri Ugo Montanari
Dipartimento di informatica — Universita di Pisa
Corso talia 40 — I - 56100, Pisa, Italy

ABSTRACT

A simple calculus of Place/Transition Petri Nets, called SCONE, is introduced.
Relationships between SCONE and the subsat of CCS without restriction and relabel-
ling, called RCCS, are studied by showing that RCCS can be implemented onto the net
caleulus. The implementation is given by means of a suitable mapping from RCCS
transitions to SCONE computations, resulting in a finite net representation for RCCS
agents. By quotienting the tranmsition system of RCCS with respect to the
implementation mapping, we induce also a "true concurrent” semantics for RCCS.
These results are developed in the framework of “graphs with algebraic structure” as
explained in [MM28, DMM89, MYB9, F30, FM90, Co%0].

L. INTRODUCTION

Among the various approaches to the scmantics of concurrency, we distinguish two: the so-called
“interleaving” approach and the “true concurrent” one. The main merit of the former is its well-established
theory. A concurrent system is described by a term of a language, which gives rise t0 a transition system.
The states are theinselves terms of the language and the transitions are defined by means of a deductive
system in structural inductive form, as proposed by Plotkin [Plo81] with his Structured Operationai
Semantics (SOS for short). Equivalences among states / terms are defined according to a sujtable notion of
observation and sthe useful result is that observational congruences have a nice axiomatization,
Unfortunately, there is a serious drawback: this approach relies on the well-known idea of describing
system behaviours as sequences of transitions, a too simplistic view in many practical cases when
information about distribution in space, about causal dependency or about fairness must be provided. On
the other side, in the “true concurrent” approach, which started from the pioneering work of Petri [Pet62],
this kind of information can be easily given, but net theory has not yet reached a completely satisfactory
theoretical treatment if compared with the firm results coming from the interleaving side. Rephrasing and
extending the ideas developed for the interleaving approach to the ““trae concurrent” case can be considered
the main goal of a branch of concurrency theory. The present paper aims at giving a contribution in this
direction.

The basic model of Place/Transition Petri Nets has recently received, by the second author in joint
work with J. Meseguer [MMB8], a simple algebraic description by showing that a P/T net can be starically
described as an ordinary directed graph equipped with a commutative monoidal operation @ on nodes, and
dynamically as a graph with also two operations on transitions (the parallel composition operator & and the

Research supported in part by EEC Basic Research Action n.3011 CEDISYS.
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sequential composition operator ;}, together with suitable axioms for identifying those computations which
are observationally identical. Unfortunately, Petri Nets, at least in their usoal formulation, are not very
suited for modular description of concurrent system: to get this capability we should have operators for
building new nets from existing ones, but Petri Nets do not have any (finite} syntax generating them and so
no general theory of composition and decomposition can be defined for them. Therefore, we should restrict
OUr attention 10 a particular class of nets possessing such a syntax, which thas forms naturally a langoage
for nets. To be more precise, we are interested not only in defining 2 language whose formulae specify
distribated systems, but also in describing the nets representing their behaviour as & calculus. Hence,
extending Plotkin's paradigm to distributed systems, formulae of the language would denote markings of
the net, while net transitions would be defined by means of a syntax-driven deductive system. The title

emphasizes this aspect of the paper.

By observing that transition systems, as well as P/T nets, are nothing but ordinary directed graphs, we
discover that the notion of directed graph is a possible unifying mathematica! tool for investigating the
relationship between the fwo approaches to the semantics of concurrency, Moreover, it can be casily shown
that an SO8 specification, yielding the interleaving operational definition of a language as a transition
system, can be described in algebraic form: the transition system 1 a two-sorted algebra with states and
fransittons as sorts [MYR9, F90, FM90, Co90]. Therefore, the other common link between the two
approaches is the algebraic structure for nodes and transitions. Indeed, SOS specifications and Peiri Nets
are both speciatizations of the graph concept obtained by adding (different) algebraic structure on nodes and
wansitions; in this way, graphs defined as two-sorted algebras represent the uniform framework we were
looking for.

A calculus for nets can be introduced by defining an algebra for the nodes of the graph in such a way
that it can be seen as a free algebra of markings, generated by the places. Therefore, the algebra muss
possess, among others, also the commutative monoidal operator @. Here, as a case study, we have
introduced a Simple Calcnlus Of NEts (SCONE). It has been admittedly chosen as simple as possibte bug
with the necessary operators for considering it a real language for nets, The combinators generating places
are prefixing, nondeterministic composition and the recursive definition construct. The combinators
generating net transitions comprise the prefix, Jocal choice, and the synchronization operators. The axioms
of the calculus {act, sum-< and sum->, below) represent the set of the generators of the algebra and the
inference rule (sync, below) is its sole operation, building 2 new transition from a pair of given transitions.
In this way, the terms of the algebra denote the proofs of the transitions in the comresponding SOS
specification. To help infuition, a transition is represenied in the format t | v—t—v' where t is a proof term
and v—p—v" is the corresponding SOS triple. SCONE is thus described by the following calculus in
algebraic form, with axioms for associativity and commatativity of @ on nodes and of | on transitions:

act} [p,> : pv=p—sy

sum-<} Ver v L vev—g—ow

sum->) viiey o viv—g-sv

sync) the ¢ @y Tov,Bv, where v, =A—v, and t'v' =k = V5.

We want to siress the similarities of our construction with respect to Milner's [Mil89). CCS is defined
as a single whole transition system by means of an 3OS specification. Simitarly, our net calculus defines a
single whole net. Moreover, if one is interesied in the behaviour of a particular CCS agent, the relevant
pitce of transition system is the part reachable from the state cormesponding (o the agent; analogously, we
can single out a sub-nes corresponding to a SCONE marking. This is a fairly new result in the context of
nets. As a matter of fact, severzl algebras have been proposed for Petri Nets [K78, GM84, W85, W87,
Gog8, ChB9] in such & way that a Pefri net can be specified by a formula of the proposed algebea, but they
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lack the pleasant feature of having a single net comprising all the agent subnets. Recent ideas proposed by
Degane, De Nicolz and Montapar [DDMEBa, DDMEBb, DGMEE, DDMRE?] go in the direction of
trensforming concurrent calcuid, like CCS or CSP, into net calculi. In a sense, here we try to algebraicaily
formalize some of the ideas developed there and in other related works [OFdE9, TB9]. A first attempt in this
direction is [MY89] where, however, the resulting algebraic structure does not correspond to a net.

According to Milner's paradigm, the next step in giving the semantics of a concurrent language
consists of defining the equivalence classes of its computations according to an intended notion of
observation. The possible observation out of a net computation is not unique: several notions have been
developed, among which we mention firing or step sequences (sequences of steps cach with one or af
least one firing transition), nonsequential processes (unfoldings of the net N from an initial marking)
[GRE3], and commuaative processes [BDE7]. Defining the algebra of Peri net computations by means of
the operation of parallel and sequential composition, Degano, Meseguer and Montanari have shown an
elegant axiomatization of these notions in [DMMS89], where acwally a slight refinement of classical
nonsequential processes, called concatenable processes, is considered. Out of these three different notions,
we choose concatenable processes because they faithfully represent causal dependencies and, even more
importantly, are equipped with a general operation of sequential composition of partial orders.

SCONE is an extremely simple language. Instead of defining a richer calculus of nets, one can design
a truly concurrent calculus as an SOS specification, as usual, and then implement it with a suitable mapping
from its transition system to the Petri Net of SCONE. This idea has been greatly influenced by the
categorical formulation of Petri Nets, as proposed in [MMB88], which provides a flexible tool for relating
system descriptions at different levels of abstraction by means of suitable morphisms, called fmple-
mentation morphisms, in the category of net comnputations. An implementation morphism, indeed, can map
angt transition to an entire net computarion. As a case study, we apply this paradigm to a sab-set of CCS
not dealing with reswiction and relabelting, we call RCCS. First, we introduce an algebraic presentation of
the SOS specification for RCCS and then we show how 1o map the ajgebra of RCCS o the algebra of
SCONE. The implementation morphism is another manner of looking at 2 denotational semantics for RCCS
with SCONE a5 semantic domain, The combinators of SCONE are sometimes more elementary than those
of the subse1 of CCS we maodel, so that, for instance, a RCCS transition must be mapped to a SCONE
computation. Thus, the sernantic morphism maps graph fransitions 10 net computations by mapping basic
operators of (the algebra of) RCCS o derived operators of (the algebra of) SCONE. The relevance of this
result is that this mapping can be seen as an instance of a more general algebraic methodology for imple-
menting concarrent languages (also in interleaving form) into others {possibly distributed).

As already observed, e.g., in [T89), the graph representation of an agent in interleaving semantics is
usuzlly larger than its net representation. Indeed, not all the RCCS agents have a finite transition system
representation. As an example, the transition system reachable from the state “'rec x.axlox™ is infinite.
Nonetheless, we prove that for any marking v, the SCONE sub-net reachable from v is always finite.
Therefore, by mcans of the implementation mapping, we give a finite ret represeniation to any RCCS
agent. In the exampie above, the transition system for “rec x.exlox” has a natural net representation in
SCONE as a self-loop transition labeled by « with two tokens in the unique place as initial marking. In the
concluding section we wilt discuss the relationship with similar proposals (Go88, T891].

As a by-product of ithe implementation morphism, we get a “true concurrent” semantics for CCS as a
quotient of states and computations of the RCCS teansition system. Such a semantics is shown to be
consistent with the classic interleaving one, and also with the “‘true concurrent” semantics given by permu-
raiinns of ransitions [BCRO, FO(, FMS(H.

The paper is organized as follows. An account of the algebraic formulation of Pemi nets and of the
axiomatization of processes is presented in Section 2, The SOS specification of RCCS in algebraic form is
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given in Secdon 3, while the proposed calculus of nets is introduced in Section 4. In Section $ we describe
the implementation mapping from RCCS to SCONE and then, in Section 6, we prove that the induced
semantics is consistent with respect 1o Milner's and also faithfully represents causality. In Section 7, we
give some hints about the extensions of the present approach needed for dealing with richer variants of
CCS, i.e. to deal with restriction; then, we discuss the relations of our investigations with some related
works [GMM88, DDM89, Gog8, T89) and also with recent resullts on the connections between Peri Nets
and Linear Logic [AFG90, GG89, MaM89]. Finally, appendices are added to help the reader not familiar
with category theory and the algebraic construction of Petri processes. Appendix A is an introduction to the
basic definitions of category theory used throughout the paper (see {ML71] for more details). In Appendix
B we recall from [DMMS89] the definitions of categories of symmetries, of processes and of concatenzable
processes.

2. PETRI NETS AND PROCESSES

Here we recall the definition of Place/Transition Nets proposed in [MM88], and the #[N] censtruction
of a slight refinement of Goltz-Reisig processes [GRR3], called concaienable processes, introduced in
[DMMBR9].

Defimition 2.1. (Graph)

A graph G is a quadruple N = (V. T. 3, 9,), where V is the set of nodes (or states), T is the set of
arcs (or transitiens), and @, @, are two functions, culled source and target respectively: 3y, 9 TSV, A
graph marphism from G o (' is a pair of functions «,g», f: T=T and g : V=V’ which preserve the
source and the target functions: g « 8, = &', - fand g » 0, = &', + /. This, with the obvious component-
wise composition, defines the category Graph. .

Definition 2,2, (Petri Nets)

A PlaceiTransition Petri Net (net, in short) is a graph N = (8%, T, dy, 94). where 5% is the free com-
mutative monoid of nodes aver a set of places S. The elements of $®, called also the markings of the net
N, are represented as formal sums nja; @ ... ® niay (8 € 8, n; is a natural number) with the order of the
summands being immaterial, where addition is defined by (@; n,a;) ® (@ ma) = (@ (n;+my)a;) and Qs its
neutral element.

A Perri Net morphism b from N to N' is a graph morphism — i.c. a pair of functions «,g>, f. T T
and g:5%® — §'®, preserving source and target — where g is a monoid morphism (i.e. leaving 0 fixed and
respecting the monceid operation @). With this definition of morphism, nets form a category, called Petn,
equipped with products and coproducts. *

In other words, a Petri Net is an ordinary graph where the nodes are defined as an algebra with the
elements of the (possibly infinite) set S as generators and ® as the onty operation which is monoidal and
commutative. Notice that finite multisets over a (possibly infinite) set S coincide with the elememnts of the
free commutative monoid having S as set of generators.

To represent net compultations observed as processes, we construct certain monoidal categories. Here
we do not give & formal presentation of the construction, which can be found in Appendix B, but only an
intuitive exposition of the relevant definitions. We first introduce a set of constant transitions, called
symmetries, and axiomatize them, Given & in 8%, a symmetry p:u-»u is a wansition expressing the fact
that in a marking the tokens on the same place can be permuted. Since nya; ®@.. @ n.a, is the formal
representation of any u in $%, a symmetry p:u—u can be represented as a vector of permutations Gays
.-y Oy > Where 0, is a permutation of n, elements. A suggestive graphical representation of a symmerry p
on 3a® 2b where G,= [1—2, 2-»3, 351} and 6= {152, 21} is depicted in the first operand of Figure





