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Foreword

More and more, people are starting to think of software as an investment. As a conse-
quence, the concern is growing on how to develop software that can be maintained for
long periods of time and adapted to new uses ecasily. This lead to a broad interest in
software reusability. The motto “don’t tede what is there already” is galning support,

Reusability can be envisaged at the level of entire systems or at the level of individual
pieces or components of a system. Source code can be rcused, but also test cases.
designs, specifications and even requirements. Software 15 considered reusable if it
can be easily employed for applications it was not intended for ariginally.

The reuse technology that appears to be most. mature s that of generalized compo-
nents, frequently referred to as building blocks. Libraries of building blocks have been
developed and successfuily employed in several application areas. At the core of such
libraries, particularly if they are intended for applications in system programuning,
are basic data structures. Ideally they are offered in the form of abstract data types.

The concept of abstract data types is one of the most successful and pervasive strue-
turing concepts introduced into the software development practice. It embodies such
software engineering principles as separation of interface and implementation informa-
tien hiding, localization of functions, and parameterization. Their theoretical prop-
erties have been studied yuite extensively and they arc amenable to algebraic and
axiomatic specifications. Designing with abstract data types fosters reuse because it
encourages going from a special situation to the more general, or generice, case through
classification and abstraction.

Building on a strong technical foundation laid by Kleine [8] several years ago, Uhl
and Schmid have designed and implemented a new set of abstract data types that
are described in this book. The implementations in this catalogue are done in the
programming langnage Ada.

In contrast to previous sirnilar efforts, Uhl and Schmid introduce two major new ideas.
They try to achieve the utmost degree of consistency as far as the external interfaces
are concerned. They then device a hierarchical relationship between the various data
types which serves as the basis for the implementation, 1.e. the more complex members
are built out of the more elementary ones — reuse within reuse. The result of this is
a very high number of variants that can be produced from a rather small code base.
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Since the advantages of this approach in terins of development cost, code quality,
learning effort and maintenance are quite obvious, I like to call this a second generation
catalogue.

In addition to the catalogue itself, the authors give valuable practical guidelines on
how to design using abstract data types. A comprehensive example at the end of the
book illustrates the ideas through a realistic application.

Both authors have spent several years on industrial software projects or on joint
studies between industry and academia. They have helped to introduce forimal design
methods and abstract data types. ‘L'he entire text reflects this experience.

Albert Endres, Boblingen
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Chapter 1

Introduction

Reusability is one of the most promising issues in today’s arena of software engineer-
ing. Some people expect it to put an end to the “software crisis”; others, however,
consider it a technique that has been practiced since the beginning of software de-
velopment and do not expect dramatic impacts. We believe and have experienced
ourselves that reuse in the area on which we will focus here, can significantly decrease
the cost of software development and maintenance and can improve essential system

properties, like modularity and reliability.

Reuse comes in many different flavors. Biggerstaff describes the following framework

for reusability technologies in [3]:

Features Approaches to Reusahility

Component Building Blocks Patterns
Reused

Nature of Atomic and Immutable Diffuse and Malleable
Component. Passive Active

Principle of
Reuse

Composition

Generation

Application Organization Language Application | Trans-
Emphasis Component & Composition | Based Generators | {ormation

Libraries Principles Generators Systems
Typical Librarics of Obj. Oriented, | VHLLs CRT Fmirs | Language
Systems Subroutines | Pipe Archs POLs File Mgmt Transf.
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2 Chapter |, Introduction

Qur focus is on a rather specific and narrow class of reusable components, namely on
basic abstract data types, like hists, siacks, trees or sets. On the first glance this falls
into the left-hand side categories of Biggerstaff’s classification. However, the work
also touches some aspects froin the right-hand side as we will soon explain,

Qur work was triggered from experience which the seccond author made with IBM
where, in systems programming projects, abstract data types formed a considerable
part of the components reuscd [12]. Therefore, he initiated a project that produced
a catalogue of abstract data types [8]. This is, to our knowledge, the first published
collection ~ though only internal to TBM - of reusable abstract data types. As such,
it had some deficiencies which were the reason and gave the motivation to start this
work.

The main objective of our work is to present a practically useful library of cfficient
components that include the major data structures, which are known and used across
different areas, in particular, in systems programming. The sub-objectives and goals
that we derived from these objectives will be discussed in chapter 2.

The components are specified and implemented in Ada and can thus be used for
realistic applications.

The research on organization and composition principles was not one of our primary
objectives. Nevertheless, we had to do some considerable work in this field during
the search for an appropnate structure of the hibrary. Our focus was on defining
an orthogonal structure that should ease the search, the use and the exchange of
components.

Lel. us summarize here the main features, which distinguish our catalogue of abstract
dala types from existing work:

+ A clear and strict separation between functional aspects and implementation or
performance oriented aspects:

- The functional behavior is defined by around ten abstract data types, which
have a standardized interface across all data lypes.

— Every abstract data type has in the order of thousand different implemen-
tations to be accessed by one uniform interface.
There are general variations of reusable components with respect to space
bounds or potential concurrency, as Booch describes them in {4], which we
have defined in a similar way (though we have lesser subclasses and are
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not interested in concurrency in this book). In addition, the objective of
cfficiency leads to a large amount of abstract data type specific implemen-
tation variations.

We call both of them variants, which are considered as points in a library
space that is spanned by (mainly orthegonal) basic properties.

According to modern software engineering principles, an abstract data type and
its implementation should be determiined stepwise. First, the problem “specifi-
cation” should be stated thus abstracting from the efficiency related propertics
(“implementation details”). With our catalogue, the abstract data typeis Lo be
selected only on the base of this specification.

In terms of this specification one has to reason about the implementation prop-
erties, which results in the selection of the variants.

Under this viewpoint the nature of the building blocks as a whole is no longer
atomic and immutable (as Biggerstafl puts it in his framework), but becomes
similar to a transformational approach. ‘This transformational approach has also
been suggested for the use in very high level languages {VHLL), in particular
in the area of high level data types. By making the implementation properties
of the variants in our catalogue explicil, we hope to contribute to the areas of
VHI.Ls and program transformation paradigms.

o The definition of an (implementation) hierarchy ol absiract data types that
allows,

— from the user viewpoint, to select the most general abstract data type
suitable for the application. At the same tume, 1l is guaranteed that one
can select among all implementation variants that might be available with
a less general abstract data type.

- from the implementor’s and maintainer’s viewpaint, to implement every
data representation and access algorithm only once, but have it available
for every suitable abstract data type ("reuse within reuse”).

With these features, we are able to meet general requirements to a catalogue of ab-
stract data types, which are derived from the reuse paradigm presented in section 3.3,

How is our attempt related to other areas of reuse? It seems that the rcuse of data
types is at the lower end of the scale of reusable software, with regard to the size
of a single component. Therefore, it may be hard to apply our experience to other,
higher level areas of reuse. On the other hand, such higher level components might
reuse the lower level ones and we have to consider the impact of reusing the low level
components on reusabifity on the higher level.
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4 Chapter 1. Intraduction

The gain {rom a library of reusable components is equal to the product from the gain
of a single reused component and the frequency of actual uses. For the class of basic
data types the gain from reusing a single component is small, compared to the gain
of reusing more complete, application oriented solutions. However, these data types
are so frequently used that the overall gain is expected to become substantial.

This book is divided into two parts. The first part (chapters 2 - 4) discusses the
motivation, suggest a general strategy for reusing abstract data types and gives a
language independent introduction to the structure and funclionality of our library,
The second part is devoted to the realization of these ideas in Ada. It discusses the
essential means provided by Ada and the specific design decisions that were based on
the language. An extended example shows the use of the catalogue and finally we
present the complete specifications of the library components.





