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Foreword 

More and more, people are starting to think of software as an investment. As a conse­
quence, the con cern is growing on how to develop software that can be maintained for 
long periods of time and adapted to new uses easily. This lead to a broad interest in 
software reusability. The motto "don't redo what is there already" is gaining support. 

Reusability can be envisaged at the level of entire systems or at the level of individual 
pieces or components of a system. Source code can be reused, but also test cases, 
designs, specifications and even requirements. Software is considered reusable if it 
can be easily employed for applications it was not intended for originally. 

The reuse technology that appears to be most mature is that of generalized compo­
nents, frequently referred to as building blocks. Libraries of building blocks have been 
developed and successfully employed in several application areas. At the core of su ch 
libraries, particularly if they are intended for applications in system programming, 
are basic data structures. Ideally they are offered in the form of abstract data types. 

The concept of abstract data types is one of the most successful and pervasive struc­
turing concepts introduced into the software development practice. It embodies su ch 
software engineering principles as separation of interface and implementation informa­
tion hiding, localization of functions, and parameterization. Their theoretical prop­
erties have been studied 4uite extensively and they are amenable to algebraic and 
axiomatic specifications. Designing with abstract data types fosters reuse because it 
encourages going from a special situation to the more general, or generic, case through 
classification and abstraction. 

Building on a strong techllical foulldation laid by Kleine [8] several years ago, Uhl 
and Schmid have desiglled and implemented a new set of abstract data types that 
are described in this book. The implementations in this catalogue are done in the 
programming language Ada. 

In contrast to previous similar efforts, Uhl and Schmid introduce two major llew ideas. 
They try to achieve the utmost degree of consistency as far as the external interfaces 
are concerned. They then device a hierarchical relationship between the various data 
types which serves as the basis for the implementation, i.e. the more complex members 
are built out of the more elementary ones - reuse within reuse. The result of this is 
a very high number of variants that can be produced from a rather small code base. 
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IV 

Since the advantages of this approach in terrns of development cost, code quality, 
learning effort and maintenance are quite obvious, 1 like to cali this a second generation 
catalogue. 

ln addition to the catalogue itself, the authors give valuable practical guidelines on 
how to design using abstract data types. A comprehensive example at the end of the' 
book illustrates the ide as through a realistic application. 

Both authors have spent several years on industrial software projects or on JOlllt 
studies between industry and academia. They have helped to introduce formai design 
methods and abstract data types. The entire text reflects this experience. 

Albert Endres, Bûblingen 
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Chapter 1 

Introduction 

Reusability is one of the most promising issues in today's arena of software engineer­
ing. Sorne people expect it to put an end to the "software crisis"; others, however, 
consider it a technique that has been practiced since the beginning of software de­
velopment and do not expect dramatic impacts. We believe and have experienced 
ourse Ives that reuse in the area on which we will focus here, can significantly decrease 
the cost of software development and maintenance and can improve essential system 
properties, like modularity and reliability. 

Reuse cornes in many different flavors. Biggerstaff describes the following framework 
for reusability technologies in [3]: 

Features Approaches to Reusability 
Component Building Blocks Patterns 
Reused 
Nature of Atomic and Immutable Diffuse and Malleable 
Compone nt Passive Active 
Principle of Composition Generation 
Reuse 

Application Organization Language Application Trans-
Emphasis Component & Composition Based Generators formation 

Libraries Principles Generators Systems 
Typical Libraries of Obj. Oriented, VHLLs CRT Fmtrs Language 
Systems Su brou tines Pipe Archs POLs File Mgmt Transf. 
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2 Chapter 1. Introduction 

Our focus is on a rather specifie and narrow c1ass of reusable components, namely on 
basic abstract data types, like lists, stacks, trees or sets. On the first glance this falls 
into the left-hand si de categories of Biggerstaff's classification. However, the work 
also touches sorne aspects from the right-hand si de as we will soon explain. 

Our work was triggered from experience which the second author made with IBM 
where, in systems programming projects, abstract data types formed a considerable 
part of the components reused [12]. Therefore, he initiated a project that produced 
a catalogue of abstract data types [8]. This is, to our knowledge, the first published 
collection - though only internaI to IBM - of reusable abstract data types. As such, 
it had sorne deficiencies which were the reason and gave the motivation to start this 
work. 

The main objective of our work is to present a practically useful library of efficient 
components that include the major data structures, which are known and used across 
different areas, in particular, in systems programming. The sub-objectives and goals 
that we derived from these objectives will be discussed in chapter 2. 

The components are specified and implemented in Ada and can thus be used for 
realistic applications. 

The research on organization and composition principles was not one of our primary 
objectives. Nevertheless, we had to do sorne considerable work in this field during 
the se arch for an appropriate structure of the library. Our focus was on defining 
an orthogonal structure that should ease the search, the use and the exchange of 
components. 

Let us summarize here the main features, which distinguish our catalogue of abstract 
data types from existing work: 

• A c1ear and strict separation between functional aspects and implementation or 
performance oriented aspects: 

The functional behavior is defined by around ten abstract data types, which 
have a standardized interface across ail data types. 

Every abstract data type has in the order of thousand different implemen­
tations to be accessed by one uniform interface. 

There are general variations of reusable components with respect to space 
bounds or potential concurrency, as Booch describes them in [4], which we 
have defined in a similar way (though we have lesser subclasses and are 
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3 

not interested in concurrency in this book). In addition, the objective of 
efficiency leads to a large amount of abstract data type specific implemen­
tation variations. 
We cali both of them variants, which are considered as points in a library 
space that is spanned by (mainly orthogonal) basic properties. 

According to modern software engineering principles, an abstract data type and 
its implementation should be determined stepwise. First, the problem "specifi­
cation" should be stated thus abstracting from the efficiency related properties 
("implementation details"). With our catalogue, the abstract data type is to be 
selected only on the base of this specification. 

In ter ms of this specification one has to reason about the implementation prop­
erties, which results in the selection of the variants. 

Under this viewpoint the nature of the building blocks as a whole is no longer 
atomic and immutable (as Biggerstaff puts it in his framework), but becomes 
similar to a transformation al approach. This transformation al approach has al80 
been suggested for the use in very high level languages (VHLL), in particular 
in the are a of high level data types. By making the implemen tation properties 
of the variants in our catalogue explicit, we hope to con tribu te to the areas of 
VHLLs and program transformation paradigms . 

• The definition of an (implementation) hierarchy of abstract data types that 
allows, 

from the user viewpoint, to select the most general abstract data type 
suitable for the application. At the same time, it is guaranteed that one 
can select among ail implementation variants that might be available with 
a less general abstract data type. 

from the implementor's and maintainer's viewpoint, to implement every 
data representation and access algorithm only once, but have it available 
for every suitable abstract data type ("reuse within reuse"). 

With these features, we are able to meet general requirements to a catalogue of ab­
stract data types, which are derived from the reuse paradigm presented in section 3.3. 

How is our attempt related to other areas of reuse? It seems that the reuse of data 
types is at the lower end of the scale of reusable software, with regard to the size 
of a single component. Therefore, it may be hard to apply our experience to other, 
higher level areas of reuse. On the other hand, such higher level components might 
reuse the lower lev el ones and we have to consider the impact of reusing the low level 
components on reusability on the higher level. 
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4 Chapter 1. Introduction 

The gain from a library of reusable components is equal to the product from the gain 
of a single reused component and the frequency of actual uses. For the class of basic 
data types the gain from reusing a single component is small, compared to the gain 
of reusing more complete, application oriented solutions. However, these data types 
are so frequently used that the overall gain is expected to become substantial. 

This book is divided into two parts. The first part (chapters 2 - 4) discusses the 
motivation, suggest a general strategy for reusing abstract data types and gives a 
language independent introduction to the structure and functionality of our library. 
The second part is devoted to the realization of these ideas in Ada. It discusses the 
essential means provided by Ada and the specifie design decisions that were based on 
the language. An extended example shows the use of the catalogue and finally we 
present the complete specifications of the library components. 
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