Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

” 460

LL

° Jirgen Uh!

" Hans Albrecht Schmid

3

L

=

S

= A Systematic Catalogue
of Reusable
Abstract Data Types

2 | Springer-Verlag
! :} Berlin Heidelberg New York London
: Paris Tokyo Hong Kong Barcelona



BIBLIOTHEQUE DU CERIST

Editorial Board
D. Barstow W.Brausr P Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmiiller J. Stoer N, Wirth

Authors

Jirgen Uni

Forschungszentrum informatik, Universitit Karlsruhe
Haid-und-Neu-StraBe 10-14, W-7500 Karlsruhe, FRG

Hans Albrecht Schrmid
Fachbereich informatik, Fachhochschule Konstanz
Brauneggerstralie, W-7750 Kenstanz, FRG

CR Subject Classification {1987): D.2.2, 0.2.m,D.3.3, E.2

ISBN 3-540-53229-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-53229-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whather the whole or part ot the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only parmitted under the pravisions of the German Copyright
Law of Septermber 9, 1865, in ils current version, and a copyright fee must always be paid.
Viclations falt under the prosecution act of the German Copyright Law,

© Springer-Verlag Berlin Heidelberg 1980

The copyright for the Ada Specifications (Appendix A) rests with the authors.

Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr,
2145/3140-543210 — Prinled on acid-free paper



BIBLIOTHEQUE DU CERIST

Foreword

More and more, people are starting to think of software as an investment. As a conse-
quence, the concern is growing on how to develop software that can be maintained for
long periods of time and adapted to new uses ecasily. This lead to a broad interest in
software reusability. The motto “don’t tede what is there already” is galning support,

Reusability can be envisaged at the level of entire systems or at the level of individual
pieces or components of a system. Source code can be rcused, but also test cases.
designs, specifications and even requirements. Software 15 considered reusable if it
can be easily employed for applications it was not intended for ariginally.

The reuse technology that appears to be most. mature s that of generalized compo-
nents, frequently referred to as building blocks. Libraries of building blocks have been
developed and successfuily employed in several application areas. At the core of such
libraries, particularly if they are intended for applications in system programuning,
are basic data structures. Ideally they are offered in the form of abstract data types.

The concept of abstract data types is one of the most successful and pervasive strue-
turing concepts introduced into the software development practice. It embodies such
software engineering principles as separation of interface and implementation informa-
tien hiding, localization of functions, and parameterization. Their theoretical prop-
erties have been studied yuite extensively and they arc amenable to algebraic and
axiomatic specifications. Designing with abstract data types fosters reuse because it
encourages going from a special situation to the more general, or generice, case through
classification and abstraction.

Building on a strong technical foundation laid by Kleine [8] several years ago, Uhl
and Schmid have designed and implemented a new set of abstract data types that
are described in this book. The implementations in this catalogue are done in the
programming langnage Ada.

In contrast to previous sirnilar efforts, Uhl and Schmid introduce two major new ideas.
They try to achieve the utmost degree of consistency as far as the external interfaces
are concerned. They then device a hierarchical relationship between the various data
types which serves as the basis for the implementation, 1.e. the more complex members
are built out of the more elementary ones — reuse within reuse. The result of this is
a very high number of variants that can be produced from a rather small code base.



BIBLIOTHEQUE DU CERIST

v

Since the advantages of this approach in terins of development cost, code quality,
learning effort and maintenance are quite obvious, I like to call this a second generation
catalogue.

In addition to the catalogue itself, the authors give valuable practical guidelines on
how to design using abstract data types. A comprehensive example at the end of the
book illustrates the ideas through a realistic application.

Both authors have spent several years on industrial software projects or on joint
studies between industry and academia. They have helped to introduce forimal design
methods and abstract data types. ‘L'he entire text reflects this experience.

Albert Endres, Boblingen



BIBLIOTHEQUE DU CERIST

Acknowledgments

QOur thanks are due to the institution and persons who made this work possible,
and to our colleagues with whom we had fruitful discussions. Especially, we want to
acknowledge

o the support of IBM and, in particular, of Albert Endres, who established the
department of research and development in reusability at the IBM Boblingen
development laboratory as early as 1983, and

s the base laid by Karl Kieine from FZI Karlsruhe, who made — under the contract
of this department - the first steps into the land of catalogues and libraries of
abstract data types as reusable components in 1984,

Jiirgen Uhl, Karlsruhe
Hans Albrecht Schmid, Konstanz
May 1990



BIBLIOTHEQUE DU CERIST

i

Contents
1 Introduction 1
2 Motivation and Objectives 5
2.1 Simplicity of the Library Structure . . . . . . . . ... 6
2.2 FPunclional Completeness . . . . . . . . .. . . . ... .. ... ... 8
2.3 Completeness of Implementation Variants . . . . . . . . .. . ... .. 10
2.4 Maintainability . . . . .0 Lo 12
3 How to Reuse Abstract Data Types 15
3.1 Working With Data Structures - A Counter-Example . . . . .. . .. 16
3.1.1  Selecting a Data Structure . . . . e 17
3.1.2  Designing the Operations on the Data. Snructme ........ 17
3.1.3 Conclusion . . . ..o 18
3.2 Reusing Abstract Data Types . . . . . . . . .. . .. .0 19
3.2.1  BSeleclting “Low Level” Abstract Data Types . . . . . . . .. .. 20
3.2.2  Selecting the “Right” Abstract Data Types . . . .. . . . . .. 23
3.2.3  An Abstract Specification and Selution . . .. ... .. 25
3.2.4 Selection of an Abstract Daila ‘T'ype Vartant . . . . . . . . . .. 27
3.3 HReuse Paradigm . . . . ... L0 29
4 Structure of the Catalogue 37
4.1 The Implementation Hierarchy . . . . . . . . . . ... ... ... .. 37
4.2 The Abstract Data Types - an Overview . . . . . . . . . .. . ... .. 39
4.2.1  List 40
4.2.2  Stack : 40
4.2.3 Queue and Deque 41
424 Tree . e 41
125 Ovder . . 0L 11
4.2.6 Set . ... o 42
4.2.7 Map ... e 42



BIBLIOTHEQUE DU CERIST

Vil

428 Bag . .. ..o,
4.3 Variants of Building Blocks . . . . . . . ... ...
Structure of the Butlding Blocks
5.1 General Properties of the Data Types . . . . . .. . . .. .. ... ..
5.1.1 Objects and Values . . . . . . . . .. ... ...,
5.1.2  Structure Sharing . . . . . ...
5.1.3 Compact and Dispersed Representations . . . . . . . . . . . ..
5.1.4  Recursive Composition . . . . . . . . . .. ... ...
5.2 Types .. .. o
5.2.1 The Type STRUCT . .. . . . . ... ...,
522 The TypeINDEX . . .. .. ... . ... ..
5.2.3 INSERT.POSITIONs and REMOVE_POSITIONs . . .. . .
524 Structure PARTs . . . . . . oL
5.2.5 The Type ITERATIONCRDER . .. . ... . ... . ...
5.3 Operations . . . . . .. . L.
9.3.1 Constructors . . . . . ..o
5.3.2 Operations Based on Indices . . . . . . . . .. .. ... ..
5.3.3  Access by Position Count . . . . . .. ... ...
5.3.4 Selector Operations . . . . . . . . . ... ... ... ...
535 Rterators . . .. .. L
536 RBeduction . . . . .
5.3.7 Find, Skipand Count . . . . . .. ... L.
5.3.8 Existential and Universal Quantifiers . . . . . . . . . . . .. ..
9.3.9 Order Dependent Operations . . . . .. . .. .. .. . ... ..
5.3.10 Hash Operation. . . . . . . .. .. . ... ..o
5.4 GQGenernic Parameters . . . . . . ... ..o
0.4.1 Equal, Copy,and Transfer . . . . . . .. .. ... . ... ...
5.4.2  Initiatization . . . .. ..o
543 Deallocation . .. ...
544 Ap Example . . .o C
545 Key-Info Types . . . . . . . ... ... ...
546 Accessed Elements . . . . . .. ... ... o
5.4.7 Bounded Collections . . . . . . . . . .. . .. . ... . ... .
3.5 Variant Parameters . . . . . . . . ... .00 Lo
5.5.1 Classes of Elernent Types . . . . . . .. .. ... ... ....
5.5.2 Collection Management . . . . . . .. . . ... .. ... ..
5.5.3 Consistency Checking . . . . ... ... ... . ... ... ...
554 Algorithms vs. Data . . . . . . . . . . ...
5.5.5 SUMIMALY . . . - . . o e e e

45
46
44
47
48
49
50
30
51
33
54

89



BIBLIOTHEQUE DU CERIST

6.1

6.2

6.3

6.4

6.5

6 The Building Blocks
Linked Collections . . . . . . . . .
6,11 Synopsis . . . . ...
6.1.2 Types and Operations . . . . . . .. . .. . ... ... ...
6.1.3 Implementation Overview . . . . .. .. . ... ... ... ...
6.1.4 Specific Generic Parameters . . . . . . . . ... ...
6.1.5 Specific Variants . . . . . . . ... oo
6.1.6 General Variants . . . . . . . . .. .. .
6.1.7 Representation of Linked Collections . . . . . . . .. ... ...
Tabular Collections . . . . . . . . . . ... ...
6.2.1 Synopsis . . . . ..
6.2.2 Typesand Operations . . . . . . . .. ... ... ... ..
6.2.3 lmplementation Overview . . . . . . . . . .. . ... ... ...
6.2.4 Specific Generic Parameters . . . . . . . .. ...
6.2.5 Specific Variants . . . . .. ... ... L
626 General Variants . . . . . .. Lo
Hash tables . . . . . . . . .. ..
6.3.1 Synopsis . . ... Lo
68.4.2 Types and Operations . . . . . .. . .. . ...
6.3.3 Implementation Overview . . . . . . . . . ... . . . . .....
6.3.4 Specific Generic Parameters . . . . . . . . ... 0L
6.3.5 Specific Variants . . . . . .. ...
6.3.6 General Variants . . . . . . ..
6.3.7 Combinationof Variants . . . . . . .. . .. ... .. . ... ..
6.3.8 Representation of Hash tables . . . . . . .. .. .. .. . ..
Lists, Linked Lists, Tabular Lists . . . . . .. . . ... .. ......
641 Synopsis . . . ... ... Lo
68.4.2 Typesand Qperations . . . . . . . .. . . . ... ... ..
6.4.3 Implementation Overview . . . . . .. . ... . .. ... ...
6.4.4 List Specific Variants . . . . . .. . ... ... ...,
645 General Variants of Lists . . . . . . . . . ... ... ... ..
68.4.6 Combination of List Variants . . . . . . . . .. ... . .. ...
6.4.7 Linked List Specific Vartants . . . . . . .. .. . ... ..
6.4.8 General Vanants of Linked Lasts . . . . . .. . . .. . .. ..
6.4.9 Combination of Linked List Variants . . . . . . . . . .. . . ..
6.4.10 Representation of Linked List by Linked Collections ..
6.4.11 Tabular List Specific Variants . . . . . . . ... . ... ... ..
6.4.12 General Variants of Tabular Lists . . . . .. .. . .. .. .. ..
6.4.13 Representation of Tabular Lists by Tabular Collections . . . .
Stacks . . . .. L
6.5.1 Synopsis . . . . Lo

652 Typesand Operations . . . . . . . . .. . ... ... ... ..



BIBLIOTHEQUE DU CERIST

6.4

6.8

6.9

653
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

Itnplementation Overview . . . . . . . ... L
Specific Vanants

General Vartants . . . . . . . L. S
Combmation of Vanants . . . . . . . ... ... ... ...
Representation Specific Variants e
Representation of Stacks by Lists .~ . . . . . . . .

Queues and Deques . . . . . .. Lo

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8

Symopsis . . .. . Lo
Types and Operations . . . . . . . ... ...
Implementation Overview . . . . . . . L0000 oL
Specific Variants

General Vartants . . . . . L
Combination of Variants . . . . . . . . . . . . ... ... ...
Representation Specific Variants : S
Representation of Queues and Deques by I ists .. ... S

Trees, Linked Trees, Tabular Trees

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.7.10
6.7.11
6.7.12
6.7.13
6.7.14

Orders

6.5.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
687
6.8.8
6.8.9

Synopsis . . .

1'ypes and Opel allons o

Emplementation Overview . . . . . e
Specific Generic Parameters . . . . . . . . . . . .. ... ...
Tree Specific Vartants . . . . . . . .. ... ... .. o
General Variants of Trees . . 0 . 0 0 . 0 .00 .00 0L
Combinatiou of Tree Vartants . . . . . . . .. . . . . .. .
Linked Tree Specific Vanants . . . . . . . .. . . ... ..
General Variants of Linked Trees . . . . . . . . ...
Combination of Linked Tree Variants .

Representation of Linked Trees by Linked C O”Pl"fiol]b S
Tabular Tree Specific Varnants . . . . . .. ... .. .. .. ..
General Variants of Tabular Trees . . . . . . . . . .. .. ..
Representation of Tabular Trees by Tabular Collections
Synopsis . . . ..
Types and Operations
bnplementation Overview . . . . .
Specific Generic Parameters . . . . . . . . e
Specific Varlants

General Varants = .
Combination of Variants . . . . . . . ... . S
Representation Specific Variants . . . . . . . . .. . L.
Representation of Orders by Lists and Trees . . . . . 0 0 0 .

Sets and Maps

6.9.1

Synopsis . . .. . ... ...

148
150
150
151
1hl
153
154
154
151
155
155
155
156
156
157
153
158
159
167
168
163
169
169
LgY
171}
171
172
173
174
174
176
176
177

TR
178
179
179
180
180
Is3
145

1a5



BIBLIOTHEQUE DU CERIST

6.9.2 Types and Operations . . . . . .. ... .. e
£.9.3 Implementation Overview . . . . . . . . . .. ...
6.9.4 Specific Generic Parameters . . . . . . . ... 0oL
6.9.5 Specific Varlants . . . . . . ..o
6.4.6 General Variants . . . . .. . ..o e
6.9.7 Combination of Variants . . . . . . . . . .. e
6.9.8 Representation Specific Vartants . . . . .. .. o000
.99 Representation of Sets and Maps . . . . . . .. ... ... ...

6.10 Bags . . . . . ...
6.10.1 Synopsis . . . . . . e
6.10.2 Types and Operations - . . . . . . . .. ... ...
6.10.3 Implementation Overview . . . . . . . . . ... ... ... .
6.10.14 Specific Generic Paramcters . . . . . . . . ... o0
6.10.5 Specific Variants . . . . . ..o
6.10.6 General Variants . . . . . . . . . . ..o
6.10.7 Combination of Vanants . . . . . . . .. . . ... ...
6.10.8 Representation Specific Variants . . . . . . . ... L
6.10.9 Representation of Bags

7 Technical Issues

7.1  Selection of Building Block Variants . . . . .. .. .. ... ...
7.2 Ada Design Decislons . . . . . . . .. ..o o
7.2.1 Dispersion of Structures Objects . . . . .. .. . .. . . .. ..
7.2.2 Composition of Data Types . . . . . . . ... ... .. ... .
723 Storage Management . . . . .. .. 0000
7.3  Deficieucies and Open Problems

Case Study: A File Conupression Systean

¥.1 The Overall Task . . . . . ... ... ... .. .. ..

8.2 Search for Reusable Building Blocks (Phase 1)

8.3 Tunctional lecompaosition (Phase 1) .. . . .00 00000000

8.4 Modular Decomposition . . . . . . ... oL
841 Words, Codesand Items . . . . . . . . . .. ... ... ...,
842 The Word-Frequency Collection . . . . . . . . ... . ...
843 The Word-Code Map . . . . .. . . ... ... .. ......
844 The Code-Word Map . . . .. .. . .. . ... ... . .. ...

8.5 Search for Reusable Building Blocks (Phase 2) . . . . . . . . ..
851 Words, Codes and Itemns .~ - . . . . . .. .. . ..
852 The Word-Frequency Collection . . . . . . . .. . ..
853 The Word-Code Map . . . . . . . . ...
854 Decompression . . - . . . ..o



BIBLIOTHEQUE DU CERIST

Xil

Bibliography 227
Appendix: Ada Specifications 229
A.l Building Block Utilitles . . . . . . .. . . ... . ... ... 220
A.2 Generic Parameters . . . . . . . 0L 232
A3 Linked Collections . . . .. . . .. . .. ... ... ... .. . 234
A 4 Tabular Collections . . . . . . . . . .. .. 236
A5 Hash Tables . . . . . .. . .. 238
AB Lists . . . 243
AT Stacks . ... 259
A8 Queuesand Deques . . . . . . . .. ... Lo 271
A9 Trees . . . . .. 282
A0 Oxders . . .. L, 294
A1l Key-Info Orders . . . . . . . ... ... ... 304
AlZS8ets . .. L e 218
Ad3Maps . . . L 326
AldBags . . . ... 338



BIBLIOTHEQUE DU CERIST

Chapter 1

Introduction

Reusability is one of the most promising issues in today’s arena of software engineer-
ing. Some people expect it to put an end to the “software crisis”; others, however,
consider it a technique that has been practiced since the beginning of software de-
velopment and do not expect dramatic impacts. We believe and have experienced
ourselves that reuse in the area on which we will focus here, can significantly decrease
the cost of software development and maintenance and can improve essential system

properties, like modularity and reliability.

Reuse comes in many different flavors. Biggerstaff describes the following framework

for reusability technologies in [3]:

Features Approaches to Reusahility

Component Building Blocks Patterns
Reused

Nature of Atomic and Immutable Diffuse and Malleable
Component. Passive Active

Principle of
Reuse

Composition

Generation

Application Organization Language Application | Trans-
Emphasis Component & Composition | Based Generators | {ormation

Libraries Principles Generators Systems
Typical Librarics of Obj. Oriented, | VHLLs CRT Fmirs | Language
Systems Subroutines | Pipe Archs POLs File Mgmt Transf.




BIBLIOTHEQUE DU CERIST

2 Chapter |, Introduction

Qur focus is on a rather specific and narrow class of reusable components, namely on
basic abstract data types, like hists, siacks, trees or sets. On the first glance this falls
into the left-hand side categories of Biggerstaff’s classification. However, the work
also touches some aspects froin the right-hand side as we will soon explain,

Qur work was triggered from experience which the seccond author made with IBM
where, in systems programming projects, abstract data types formed a considerable
part of the components reuscd [12]. Therefore, he initiated a project that produced
a catalogue of abstract data types [8]. This is, to our knowledge, the first published
collection ~ though only internal to TBM - of reusable abstract data types. As such,
it had some deficiencies which were the reason and gave the motivation to start this
work.

The main objective of our work is to present a practically useful library of cfficient
components that include the major data structures, which are known and used across
different areas, in particular, in systems programming. The sub-objectives and goals
that we derived from these objectives will be discussed in chapter 2.

The components are specified and implemented in Ada and can thus be used for
realistic applications.

The research on organization and composition principles was not one of our primary
objectives. Nevertheless, we had to do some considerable work in this field during
the search for an appropnate structure of the hibrary. Our focus was on defining
an orthogonal structure that should ease the search, the use and the exchange of
components.

Lel. us summarize here the main features, which distinguish our catalogue of abstract
dala types from existing work:

+ A clear and strict separation between functional aspects and implementation or
performance oriented aspects:

- The functional behavior is defined by around ten abstract data types, which
have a standardized interface across all data lypes.

— Every abstract data type has in the order of thousand different implemen-
tations to be accessed by one uniform interface.
There are general variations of reusable components with respect to space
bounds or potential concurrency, as Booch describes them in {4], which we
have defined in a similar way (though we have lesser subclasses and are



BIBLIOTHEQUE DU CERIST

not interested in concurrency in this book). In addition, the objective of
cfficiency leads to a large amount of abstract data type specific implemen-
tation variations.

We call both of them variants, which are considered as points in a library
space that is spanned by (mainly orthegonal) basic properties.

According to modern software engineering principles, an abstract data type and
its implementation should be determiined stepwise. First, the problem “specifi-
cation” should be stated thus abstracting from the efficiency related propertics
(“implementation details”). With our catalogue, the abstract data typeis Lo be
selected only on the base of this specification.

In terms of this specification one has to reason about the implementation prop-
erties, which results in the selection of the variants.

Under this viewpoint the nature of the building blocks as a whole is no longer
atomic and immutable (as Biggerstafl puts it in his framework), but becomes
similar to a transformational approach. ‘This transformational approach has also
been suggested for the use in very high level languages {VHLL), in particular
in the area of high level data types. By making the implementation properties
of the variants in our catalogue explicil, we hope to contribute to the areas of
VHI.Ls and program transformation paradigms.

o The definition of an (implementation) hierarchy ol absiract data types that
allows,

— from the user viewpoint, to select the most general abstract data type
suitable for the application. At the same tume, 1l is guaranteed that one
can select among all implementation variants that might be available with
a less general abstract data type.

- from the implementor’s and maintainer’s viewpaint, to implement every
data representation and access algorithm only once, but have it available
for every suitable abstract data type ("reuse within reuse”).

With these features, we are able to meet general requirements to a catalogue of ab-
stract data types, which are derived from the reuse paradigm presented in section 3.3,

How is our attempt related to other areas of reuse? It seems that the rcuse of data
types is at the lower end of the scale of reusable software, with regard to the size
of a single component. Therefore, it may be hard to apply our experience to other,
higher level areas of reuse. On the other hand, such higher level components might
reuse the lower level ones and we have to consider the impact of reusing the low level
components on reusabifity on the higher level.



BIBLIOTHEQUE DU CERIST

4 Chapter 1. Intraduction

The gain {rom a library of reusable components is equal to the product from the gain
of a single reused component and the frequency of actual uses. For the class of basic
data types the gain from reusing a single component is small, compared to the gain
of reusing more complete, application oriented solutions. However, these data types
are so frequently used that the overall gain is expected to become substantial.

This book is divided into two parts. The first part (chapters 2 - 4) discusses the
motivation, suggest a general strategy for reusing abstract data types and gives a
language independent introduction to the structure and funclionality of our library,
The second part is devoted to the realization of these ideas in Ada. It discusses the
essential means provided by Ada and the specific design decisions that were based on
the language. An extended example shows the use of the catalogue and finally we
present the complete specifications of the library components.





