
Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

460

Jürgen Uhl
Hans Albrecht Schmid

A Systematic Catalogue
of Reusable
Abstract Data Types

Springer-Verlag
Berlin Heidelberg New York London

Paris Tokyo Hong Kong Barcelona

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Editorial Board

D. Barstow W. Brauer P Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Authors

Jürgen Uhl
Forschungszentrum Informatik, Universitiit Karlsruhe
Haid·und·Neu·StraBe 10-14, W-7500 Karlsruhe, FRG

Hans Albrecht Schmid
Fachbereich Informatik, Fachhochschule Konstanz
BrauneggerstraBe, W· 7750 Konstanz, FRG

CR Subject Classification (1987): 0.2.2, 0.2.m, 0.3.3, E.2

ISBN 3-540-53229-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-53229-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, wh ether the whole or part of the mate rial
is concerned, specifically the ri9ht5 of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
ofthis publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its Current version, and a copyright fee must always be paid.
Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990
The copyright for the Ada Specifications (Appendix A) rests with the authors.
Printed in Germany

Printing and binding: Druckhaus Seltz, Hemsbach/Sergstr.
2145/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Foreword

More and more, people are starting to think of software as an investment. As a conse­
quence, the con cern is growing on how to develop software that can be maintained for
long periods of time and adapted to new uses easily. This lead to a broad interest in
software reusability. The motto "don't redo what is there already" is gaining support.

Reusability can be envisaged at the level of entire systems or at the level of individual
pieces or components of a system. Source code can be reused, but also test cases,
designs, specifications and even requirements. Software is considered reusable if it
can be easily employed for applications it was not intended for originally.

The reuse technology that appears to be most mature is that of generalized compo­
nents, frequently referred to as building blocks. Libraries of building blocks have been
developed and successfully employed in several application areas. At the core of su ch
libraries, particularly if they are intended for applications in system programming,
are basic data structures. Ideally they are offered in the form of abstract data types.

The concept of abstract data types is one of the most successful and pervasive struc­
turing concepts introduced into the software development practice. It embodies su ch
software engineering principles as separation of interface and implementation informa­
tion hiding, localization of functions, and parameterization. Their theoretical prop­
erties have been studied 4uite extensively and they are amenable to algebraic and
axiomatic specifications. Designing with abstract data types fosters reuse because it
encourages going from a special situation to the more general, or generic, case through
classification and abstraction.

Building on a strong techllical foulldation laid by Kleine [8] several years ago, Uhl
and Schmid have desiglled and implemented a new set of abstract data types that
are described in this book. The implementations in this catalogue are done in the
programming language Ada.

In contrast to previous similar efforts, Uhl and Schmid introduce two major llew ideas.
They try to achieve the utmost degree of consistency as far as the external interfaces
are concerned. They then device a hierarchical relationship between the various data
types which serves as the basis for the implementation, i.e. the more complex members
are built out of the more elementary ones - reuse within reuse. The result of this is
a very high number of variants that can be produced from a rather small code base.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IV

Since the advantages of this approach in terrns of development cost, code quality,
learning effort and maintenance are quite obvious, 1 like to cali this a second generation
catalogue.

ln addition to the catalogue itself, the authors give valuable practical guidelines on
how to design using abstract data types. A comprehensive example at the end of the'
book illustrates the ide as through a realistic application.

Both authors have spent several years on industrial software projects or on JOlllt
studies between industry and academia. They have helped to introduce formai design
methods and abstract data types. The entire text reflects this experience.

Albert Endres, Bûblingen

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

A cknowledgments

Our thanks are due to the institution and persons who made this work possible,
and to our colleagues with whom we had fruitful discussions. Especially, we wallt to
acknowledge

• the support of IBM and, in particular, of Albert Endres, who established the
department of research and development in reusability at the IBM Bëblingen
development laboratory as early as 1983, and

• the base laid by Karl Kleine from FZI Karlsruhe, who made - under the contract
of this department - the first steps into the land of catalogues and libraries of
abstract data types as reusable component.s in 1984.

Jürgen Dhl, Karlsruhe
Hans Albrecht Schmid, Konstanz
May 1990

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

,
~<,- -- '

'--'~'-"

Contents

1 Introduction

2 Motivation and Objectives
2.1 Simplicity of the Library Structure
2.2 Functional Completeness .
2.3 Completeness of Implementation Variants
2.4 Maintainability

3 How to Reuse Abstract Data Types
3.1 Working With Data Structures - A Counter-Example

3.1.1 Selecting a Data Structure.
3.1.2 Designing the Operations on the Data Structure
3.1.3 Conclusion

3.2 Reusing Abstract Data Types
3.2.1 Selecting "Low Level" Abstract Data Types
3.2.2 Selecting the "Right" Abstract Data Types
3.2.3 An Abstract Specification and Solution
3.2.4 Selection of an Abstract Data Type Variant

3.3 Reuse Paradigm

4 Structure of the Catalogue
4.1 The Implementation Hierarchy
4.2 The Abstract Data Types - an Overview

4.2.1 List ...
4.2.2 Stack
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Queue and Deque
Tree
Order
Set
Map

\ ,

1

5
6
8

10
12

15
16
17
17
18
19
20
23
25
27
29

37
37
39
40
40
41
41
41
42
42

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

V III

4.2.8 Bag
4.3 Variants of Building Blocks

5 Structure of the Building Blocks
5.1 General Properties of the Data Types

5.1.1 Objects and Values.

5.2

5.1.2 Structure Sharing
5.1.3 Compact and Dispersed Representations
5.1.4 Recursive Composition.
Types
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

The Type STRUCT .
The Type INDEX .
INSERT_POSITIONs and REMOVKPOSITIONs
Structure PARTs ..
The Type ITERATION_ORDER

5.3 Operations
5.3.1 Constructors
5.3.2 Operations Based on Indices
5.3.3 Access by Position Count
5.3.4 Selector Operations
5.3.5 Iterators.
5.3.6 Reduction.
5.3.7 Find, Skip and Count
5.3.8 Existential and Universal Quantifiers .
5.3.9 Order Dependent Operations
5.3.10 Hash Operation

5.4 Generic Parameters ..
5.4.1 Equal, Copy, and Transfer .
5.4.2 Initialization
5.4.3 Deallocation
5.4.4 An Example
5.4.5 Key-Info Types
5.4.6 Accessed Elements
5.4.7 Bounded Collections

5.5 Variant Parameters
5.5.1 Classes of Element Types
5.5.2 Collection Management
5.5.3 Consistency Checking
5.5.4 Algorithms vs. Data
5.5.5 Summary

42
42

45
46
46
47
48
49
50
50
51
53
.54
54
54
57
73
76
77
80
86
89
90
91
93
94
95
95
96
96
98
98
98
99
99

105
108
108
109

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

6 The Building Blocks 111
6.1 Linked Collections 112

6.1.1 Synopsis. 112
6.1.2 Types and Operations 112
6.1.3 Implementation Overview 113
6.1.4 Specifie Generic Parameters 114'
6.1.5 Specifie Variants 114
6.1.6 General Variants 114
6.1.7 Representation of Linked Collections 116

6.2 Tabular Collections. ... 117
6.2.1 Synopsis. · . 117
6.2.2 Types and Operations 117
6.2.3 Implementation Overview 118
6.2.4 Specifie Generic Parameters 118
6.2.5 Specifie Variants 119
6.2.6 General Variants 119

6.3 Hash tables 12l
6.3.1 Synopsis. · .. 121
6.3.2 Types and Operations 121
6.3.3 Implementation Overview 122
6.3.4 Specifie Generic Parameters 123
6.3.5 Specifie Variants 123
6.3.6 General Variants 126
6.3.7 Combination of Variants. 126
6.3.8 Representation of Hash tables . 127

6.4 Lists, Linked Lists, Tabular Lists 128
6.4.1 Synopsis. 128
6.4.2 Types and Operations 128
6.4.3 Implementation Overview 138
6.4.4 List Specifie Variants. 139
6.4.5 General Variants of Lists 139
6.4.6 Combination of List Variants 140
6.4.7 Linked List Specifie Variants 140
6.4.8 General Variants of Linked Lists 142
6.4.9 Combination of Linked List Variants 142
6.4.10 Representation of Linked List by Linked Collections 142
6.4.11 Tabular List Specifie Variants 143
6.4.12 General Variants of Tabular Lists 146
6.4.13 Representation of Tabular Lists by Tabular Collections 146

6.5 Stacks · . 148
6.5.1 Synopsis. 148
6.5.2 Types and Operations 148

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

6.5.3 Implementation Overview 149
6.5.4 Specifie Variants 150
6.5.5 General Variants 150
6.5.6 Combination of Variants. 151
6.5.7 Representation Specifie Variants 151
6.5.8 Representation of Stacks by Lists 153

6.6 Queues and Deques . 154
6.6.1 Synopsis. 154
6.6.2 Types and Operations 154
6.6.3 Implementation Overview 155
6.6.4 Specifie Variants 155
6.6.5 General Variants 1.55
6.6.6 Combination of Variants. 156
6.6.7 Representation Specifie Variants 156
6.6.8 Representation of Queues and Deques by Lists 157

6.7 Trees, Linked Trees, TabulaI' Trees 15ti
6.7.1 Synopsis. 158
6.7.2 Types and Operations 159
6.7.3 Implementation Overview 167
6.7.4 Specific Generic Parameters 168
6.7.5 Tree Specific Variants 168
6.7.6 General Variants of Trees 169
6.7.7 Combination of Tree Variants 169
67.8 Linked Tree Specifie Variants 169
6.7.9 General Variants of Linked Trees 171
67.10 Combination of Linked Tree Variants. 171
6.7.11 Representation of Linked Trees by Linked Collections 172
6.7.12 TabulaI' Tree Specific Variants 17:3
6.7.13 General Variants of TabulaI' Trees 174
6.7.14 Representation of TabulaI' Trees by Tabular Collections 174

6.8 Orders 176
6.8.1 Synopsis. 176
68.2 Types and Operations 177
6.8.3 Implementation Overview 178
6.8.4 Specific Generic Parameters 178
6.8.5 Specific Variants 179
6.8.6 General Variants 179
6.8.7 Combination of Variants. 180
6.88 Representation Specifie Variants 180
68.9 Representation of Orders by Lists and Trees . ltiJ

6.9 Sets and Maps 185
6.9.1 Synopsis. 1ti5

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

6.9.2 Types and Operations 185
6.9.3 Implementation Overview 187
6.9.4 Specific Generic Parameters 188
6.9.5 Specific Variants 188
6.9.6 General Variants 18~

6.9.7 Combination of Variants. 18!!
6.9.8 Representation Specifie Variants 189
6.99 Representation of Sets and Maps 193

6.10 Bags 194
6.10.1 Synopsis. 194
6.10.2 Types and Operations 194
6.103 Implementation Overview 195
6.10.4 Specific Generic Parameters 196
6.10.5 Specific Variants 196
6.10.6 General Variants 197
6.10.7 Combination of Variants. 197
6.10.8 Representation Specifie Variants 197
6.10.9 Representation of Bags 198

7 Technical Issues 199
7.1 Selection of Building Block Variants 199
7.2 Ada Design Decisions 200

7.2.1 Dispersion of Structures Objects 202
7.2.2 Composition of Data Types 204
7.2.3 Storage Management. 205

7.3 Deficiencies and Open Problems 206

8 Case Study: A File Compression System 209
8.1 The Overall Task 20!J
8.2 Search for Reusable Building Blocks (Phase 1) 210
8.3 Functional Decomposition (Phase 1) 210
8.4 Modular Decomposition 211

8.4.1 Words, Codes and Items 212
8.4.2 The Word-Frequency Collection. 214
8.4.3 The Word-Code Map 215
8.4.4 The Code-Word Map 216

8.5 Search for Reusable Building Blocks (Phase 2) 217
8.5.1 Words, Codes and Items 219
8.5.2 The Word-Frequeney Collection. 219
8.5.3 The Word-Code Map 223
8.5.4 Decompression 224

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XII

Bibliography 227

A Appendix: Ada Specifications 229
A.1 Building Block Utilities 229
A.2 Generic Parameters . 232
A.3 Linked Collections 234
A.4 Tabular Collections. 236
A.5 Hash Tables 238
A.6 Lists · 243
A.7 Stacks .. · 259
A.8 Queues and Deques . 271
A.9 Trees. .. 282
A.lO Orders .. · ... 294
A.lI Key-Info Orders 304
A.12 Sets 318
A.13 Maps . 326
A.14 Bags 338

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1

Introduction

Reusability is one of the most promising issues in today's arena of software engineer­
ing. Sorne people expect it to put an end to the "software crisis"; others, however,
consider it a technique that has been practiced since the beginning of software de­
velopment and do not expect dramatic impacts. We believe and have experienced
ourse Ives that reuse in the area on which we will focus here, can significantly decrease
the cost of software development and maintenance and can improve essential system
properties, like modularity and reliability.

Reuse cornes in many different flavors. Biggerstaff describes the following framework
for reusability technologies in [3]:

Features Approaches to Reusability
Component Building Blocks Patterns
Reused
Nature of Atomic and Immutable Diffuse and Malleable
Compone nt Passive Active
Principle of Composition Generation
Reuse

Application Organization Language Application Trans-
Emphasis Component & Composition Based Generators formation

Libraries Principles Generators Systems
Typical Libraries of Obj. Oriented, VHLLs CRT Fmtrs Language
Systems Su brou tines Pipe Archs POLs File Mgmt Transf.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2 Chapter 1. Introduction

Our focus is on a rather specifie and narrow c1ass of reusable components, namely on
basic abstract data types, like lists, stacks, trees or sets. On the first glance this falls
into the left-hand si de categories of Biggerstaff's classification. However, the work
also touches sorne aspects from the right-hand si de as we will soon explain.

Our work was triggered from experience which the second author made with IBM
where, in systems programming projects, abstract data types formed a considerable
part of the components reused [12]. Therefore, he initiated a project that produced
a catalogue of abstract data types [8]. This is, to our knowledge, the first published
collection - though only internaI to IBM - of reusable abstract data types. As such,
it had sorne deficiencies which were the reason and gave the motivation to start this
work.

The main objective of our work is to present a practically useful library of efficient
components that include the major data structures, which are known and used across
different areas, in particular, in systems programming. The sub-objectives and goals
that we derived from these objectives will be discussed in chapter 2.

The components are specified and implemented in Ada and can thus be used for
realistic applications.

The research on organization and composition principles was not one of our primary
objectives. Nevertheless, we had to do sorne considerable work in this field during
the se arch for an appropriate structure of the library. Our focus was on defining
an orthogonal structure that should ease the search, the use and the exchange of
components.

Let us summarize here the main features, which distinguish our catalogue of abstract
data types from existing work:

• A c1ear and strict separation between functional aspects and implementation or
performance oriented aspects:

The functional behavior is defined by around ten abstract data types, which
have a standardized interface across ail data types.

Every abstract data type has in the order of thousand different implemen­
tations to be accessed by one uniform interface.

There are general variations of reusable components with respect to space
bounds or potential concurrency, as Booch describes them in [4], which we
have defined in a similar way (though we have lesser subclasses and are

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

not interested in concurrency in this book). In addition, the objective of
efficiency leads to a large amount of abstract data type specific implemen­
tation variations.
We cali both of them variants, which are considered as points in a library
space that is spanned by (mainly orthogonal) basic properties.

According to modern software engineering principles, an abstract data type and
its implementation should be determined stepwise. First, the problem "specifi­
cation" should be stated thus abstracting from the efficiency related properties
("implementation details"). With our catalogue, the abstract data type is to be
selected only on the base of this specification.

In ter ms of this specification one has to reason about the implementation prop­
erties, which results in the selection of the variants.

Under this viewpoint the nature of the building blocks as a whole is no longer
atomic and immutable (as Biggerstaff puts it in his framework), but becomes
similar to a transformation al approach. This transformation al approach has al80
been suggested for the use in very high level languages (VHLL), in particular
in the are a of high level data types. By making the implemen tation properties
of the variants in our catalogue explicit, we hope to con tribu te to the areas of
VHLLs and program transformation paradigms .

• The definition of an (implementation) hierarchy of abstract data types that
allows,

from the user viewpoint, to select the most general abstract data type
suitable for the application. At the same time, it is guaranteed that one
can select among ail implementation variants that might be available with
a less general abstract data type.

from the implementor's and maintainer's viewpoint, to implement every
data representation and access algorithm only once, but have it available
for every suitable abstract data type ("reuse within reuse").

With these features, we are able to meet general requirements to a catalogue of ab­
stract data types, which are derived from the reuse paradigm presented in section 3.3.

How is our attempt related to other areas of reuse? It seems that the reuse of data
types is at the lower end of the scale of reusable software, with regard to the size
of a single component. Therefore, it may be hard to apply our experience to other,
higher level areas of reuse. On the other hand, such higher level components might
reuse the lower lev el ones and we have to consider the impact of reusing the low level
components on reusability on the higher level.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4 Chapter 1. Introduction

The gain from a library of reusable components is equal to the product from the gain
of a single reused component and the frequency of actual uses. For the class of basic
data types the gain from reusing a single component is small, compared to the gain
of reusing more complete, application oriented solutions. However, these data types
are so frequently used that the overall gain is expected to become substantial.

This book is divided into two parts. The first part (chapters 2 - 4) discusses the
motivation, suggest a general strategy for reusing abstract data types and gives a
language independent introduction to the structure and functionality of our library.
The second part is devoted to the realization of these ideas in Ada. It discusses the
essential means provided by Ada and the specifie design decisions that were based on
the language. An extended example shows the use of the catalogue and finally we
present the complete specifications of the library components.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

