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Foreword

This volume contains the text of the tutorial lecture, the texts of five invited lectures
and the texts of twenty short communications contributed for presentation at the Sixth
International Meeting of Young Computer Scientists, IMYCS’90, held at Smolenice Castle,
Czechoslovakia, November 19-23, 1990.

The IMYCSs have been organized biennially since 1980 by the Association of the Slo-
vak Mathematicians and Physicists in cooperation with Comenius University, Bratislava,
and with other institutions, The aim of the meetings is threefold: (1) to inform on newest
trends, results, and problems in theoretical computer science and related fields through
a tutorial and invited lectures delivered by internationally distinguished speakers, (2) to
provide a possibility for beginners in scientific work to present and discuss their results,
and (3) to create an adequate opportunity for establishing first professional relations
among the participants.

Short communications included in this proceedings were selected from 47 papers sub-
mitted in response to the call for papers. The selection was made on the basis of originality
and relevance of presented results to theoretical computer science and related fields by
the Programme Committee. The members of the Programme Committee were E. Csuhaj-
Varju (Budapest), J. Dassow (chairman, Magdeburg), S. K. Dulin (Moscow), K. P. Jantke
(Leipzig), J. Karhuméki (Turku), A. Kelemenova (Bratislava), M. Kfivdnek (Prague), K.
J. Lange (Munich), J. Sakarovitch (Paris), and M. Szijarté (Gyér). The editors wish to
thank all of them as well as to subreferees G. Asser, A. Brandstaedt, M. Broy, V. Diek-
ert, C. Dimitrovici, P. Duris, H. Giessmann, D. Hernandez, J. Hromkovig, J. U. Jahn, I.
Kala3, J. Kelemen, I. Korec, V. Koubek, M. Kralovd, M. Krause, F. Kroger, A. Kucera,
M. Kunde, L. Kiihnel, S. Lange, R. Letz, P. Mikulecky, M. Pawlowski, J. Prochdzka,
H. Reichel, W. Reisig, G. Riedewald, E. Ruzicky, P. Ruzi¢ka, S. Schénherr, K. Schultz,
M. Tegze, E. Tiptig, J. Vyskoc, R. Walter, J. Wiedermann, R. Wiehagen, H. Wolter, T.
Zeugmann, and maybe some others not mentioned here who assisted the members of the
Programme Committee in evaluating the submissions.

On behalf of all the participants of IMYCS’90 we express our gratitude to the members
of the organizational staff of the Meeting, especially to Peter Mikulecky for chajring the
Organizing Committee.

The editors are highly indebted to all contributors for preparing their texts carefully
and on time. We would like to acknowledge gratefully the support of the organizing
institutions: Association of Slovak Mathematicians and Physicists, Institute of Computer
Science and Department of Artificial Intelligence of the Comenius University, Bratislava,
Department of Computers of the Slovak Institute of Technology, Bratislava, and the
Mathematical Institute of the Slovak Academy of Sciences, Bratislava.

We highly appreciate the excellent cooperation with Springer-Verlag in the publication
of this volume.

Jiirgen Dassow
Jozef Kelemen
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Methods for Generating Deterministic Fractals
and Image Compression *

Karel Culik II Simant Dube

Dept. of Computer Science  Dept. of Computer Science
University of South Carclina University of South Carolina
Columbia, SC 29208, USA Columbia, SC 29208, USA

Abstract

We survey recently developed methods for generating deterministic fractals that
have the potential for compression of arbitrary (practical) images. They are the It-
erative Function Systems developed by Barnsley, the probabilistic finite generators,
and probabilistic mutually recursive systems that generalize both former methods.
We briefly introduce the formal notion of an image both as a compact set (of black
points) and as a measure on Borel sets (specifying greyness or colors). We describe
the above mentioned systems for image generation, some mathematical properties
and discuss the problem of image encoding.

1 Introduction

Recently, the fractal geometry introduced by B. Mandelbrot [19] is getting increased
attention in relation to the study of deterministic chaos (complex systems) [16}. The
relation of fractal geometry to classical geometry is similar to the relation of classical
physics, which handles primarily phenomena described by linear differential equations, to
the new “chaos” physics. “Chaos” physics studies complex phenomena, mathematically
described by nonlinear differential equations, like the flow of gases. Classical geometry
handles well “man-made” objects like polygons, circles, etc. The new “fractal” geometry
should handle well all the classical objects as well as those of fractal (recurrent) type.
Examples are H-trees, Sierpinski triangles and also all natural objects like plants, trees,
clouds, mountains, etc. The study of fractal geometry was pioneered by B. Mandelbrot
[19] and the study of practical “computational fractal geometry” by M. Barnsley {1}. He
introduced the lterative Function Systems (IFS) that are used to define an object (an
image) as the limit (attractor) of a “chaotic process.” He has used IFS to generate exclu-
sively Deterministic fractals. Voss et al. have considered techniques to generate Random
fractals [4]. Barnsley’s hyperbolic IFS [1] is specified by several affine transformations,
and the attractor is the limit of the sequence generated from an arbitrary starting point
by randomly choosing and applying these affine transformations.

“This research was supported by the National Sciences Foundation under Grant No. CCR-8702752.
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A number of various methods for generating both deterministic and random fractals
have been developed, here we will concentrate on those that have potential to be used for
eficient encoding of a wide variety of images. Besides Barnsley’s IFS we will discuss ra-
tional expressions (probabilistic finite generators), affine expressions, (probabilistic) affine
automata, and {probabilistic) mutually recursive IFS.

Barnsley’s collage theorem [1] gives the mathematical basis for infering concise IFS-
description of any given image, which includes texture or color. We will discuss how
this can be done also for finite generators. Collage theorem can be extended also to
affine automata and mutually recursive IFS, even if presently we do not have any efficient
methods of encoding arbitrary images by these methods.

Encoding of images by IFS and other methods have tremendous potential for practical
applications because they allow drastic compressing of data and their efficient processing.
For example, from an IFS description of an image it is possible to regenerate effectively
not only the original image but also its various modifications, e.g. a view from a different
angle. Applications of this are studied not only to computer graphics [3] but also to
compression of videos, to medical imaging, to high-resolution TV, etc.

We first discuss the formal notions of an image in Section 2. A black and white
image is formalized as a compact set and texture (color) image is formalized as a normal-
ized measure (greyness density). Then we introduce Barnsley’s IFS method to generate
fractals.

In [9], automata-theoretic techniques have been developed for image representation,
manipulation and generation, which we describe in Section 3. A similar approach to
represent patterns by finite automata has been independently taken in [5]. Our approach
in [9] is more general as we have defined images in terms of languages of infinite words,
rather than finite words, and we have also considered textures. Images here are sets
of points in n-dimensional space (or sometimes functions on this space specifying the
level of grey or color). Points are represented by coordinates, i.e. n-tuples of rational
numbers. In turn, rational numbers are represented by strings of bits usually in binary
notation (e.g. string 011 represents number 0.011 in binary notation). Hence an n-tuple of
strings can be interpreted as a point in the n-dimensional space < 0, 1 >" and a relation
p S I x...xE* as a set of points, i.e. an object (image). Similarly, an w-string is

n—times
interpreted as a real number in the interval < 0,1 >.

It has been known for more than twenty years that, for example, the Cantor Set (as
subset of < 0,1 >) can be represented in ternary notation by regular expression {0+2}*
[15,17). We can show how most “regular” 2-dimensional geometrical objects (both classical
and fractal) can be represented by simple rational expressions. Unlike Barnsley’s IFS the
rational expressions allow to build complex images from simple ones by set and other
operations. We can convert the rational expressions into probabilistic finite generators
that are used to generate images much like the Barnsley’s Chaos Game algorithm. We
also have a method to automatically infer the probabilistic generator from an arbitrary
given image. This is based on the quad tree representation of images that has already
been used in Computer Graphics for compressing data [18] and computing the Hausdorff
dimension of images [24]. Hence, much like Barnsley, we can concisely represent objects
(both fractal and classical) and regenerate them in the original or modified version.

In addition to considering images as compact sets, we can define “texture” images,
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which are formalized in terms of probabilistic measures. A finite approximation of such
a texture image on a computer screen will be a matrix of pixels which are assigned grey
tones (or colors).

Considering the practical descriptive power, our rational expressions (probabilistic
generators) are incomparable with Barnsley’s IFS [9].

In Section 4, we briefly discuss a generalization of Barnsley’s IFS called Affine Expres-
sions which define a bigger class of images of more complex geometries [8]. Intuitively, an
affine expression generates an image based on a finite set of affine transformations that
are applied in an order controlled by a regular set.

We consider two more generalizations of IFS in Sections 5 and 6. The first one is
probabilistic affine automaton (PAA), which is informally probabilistic finite generator
whose input symbols are affine transformations. PAA are equivalent to recurreat IFS, as
introduced in [2], under certain assumptions [8]. Fractal dimension of recurrent IFS is
computed in [14]. The other one is called mutually recursive IFS (MRIFS) and is given by
a number of “variables” which are defined in terms of each others as unions under affine
transformations. We consider both deterministic and probabilistic variations of MRIFS.
Barnsley’s Collage Theorem can be generalized to PAA and MRIFS, and provides for the
basis of the algorithm to automatically synthesize a PAA (or a MRIFS) for a given image.

Rational expressions are special case of affine expressions. This allows one to efficiently
implement rational expressions (probabilistic finite generators) by PAA and PMRIFS.
This implementation does not use the bit-by-bit approach and hence yields algorithms
that using standard (numerically oriented) software and hardware are almost as fast as
Barnsley’s.

All these generalizations of I[FS—affine expressions, PAA and MRIFS, are equivalent
in their power to generate images (as compact sets).

In Section 7, we consider another approach to generate interesting images, which is
based on L-systems (string rewriting systems). We give two examples illustrating that
certain L-systems can be simulated by MRIFS.

Finally, we conclude the paper by briefly discussing the problem of an image encoding.

2 Preliminaries

2.1 Two Notions of an Image

Following [1] we introduce two different formalizations of an image:

(1) Given a complete metric space (X,d), an image is a compact subset of X. The
quality of an approximation for such images is measured by the Hausdorfl metric h(d) on
the complete metric space K(X) of the nonempty compact subsets of X. This is a formal-
ization of such an image as consisting of black and white regions. A finite approximation
of such an image on the computer screen is an assignment of 0 (white) or 1 (black) to
each pixel of a matrix of pixels.

(2) Given a complete metric space (X, d), an image is a normalized invariant measure
on X, that is an additive function f defined on the Borel subsets of X such that f{X) =1
(see [1] for more details). The quality of an approximation for such images is measured
by the Hutchinson metric dgr on the complete metric space of all the normalized measures
on X. This is a formalization of an image as a texture, either of various tones of grey or





