
A. Cheese

Parallel Execution
ofParlog

+

x

Springer-Verlag

. ..: ~ .. - .. .

y

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

586

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

A. Cheese

Parallel Execution
ofParlog

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 69 gO
Vi ncenz- Priessn itz -S traHe
W-7500 Karlsruhe. FRG

Author

Andrew Cheese

J uris Hartmanis
Department of Computer Science
Cornell University
5149 Upson Hall
Ithaea, NY 14g53. USA

Siemens-Nixdorf Information Systems AG, Multiprocessor Unix Kerncl Group
Otto Hahn Ring 6, W-8000 Munich 83. FRG

CR Suhieet Classification (1991): D.3.4

ISBN 3-540-55382-7 Springer-Verlag Berlin Heidelherg New York
ISBN 0-387 -55382-7 Springer-Verlag New York Berlin Heidelberg

This work is suhject to copyright. Ali rights are reserved, whether the whole or part of
the mate rial is eoncerned, speeifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any othcr way,
and starage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must al ways be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready hy author
Printing and binding: Druckhaus Beltz, Hcmsbaeh/Bergstr.
45jJ 140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

Logic programming has been proposed as a programming methodology that may help in producing

more reliable and maintainable computing systems than those presently in service. At the same time

there has been a trend for making faster computers by building machines using multiple CPUs. As a

result of these two factors a family of concurrent logic languages has been deve!oped to tackle the

problems of programming these parallel computer architectures. It is important that the

implementations of such computer languages should be efficient, otherwise the benefits of

parallelism will be lost.

This monograph concentrates on the programming language Parlog and on computational models

for its efficient execution. Two such models are developed, one a fine-grain Packet-Rewriting

model and the other more coarse-grained, the Multi-Sequential mode!. Both models are reviewed in

detail and software simulators have been built for them. Results from the simulations show that the

Multi-Sequential mode! is very promising whereas the Packet-Rewriting model does nO! appear to

suitable for the efficient execution of logic languages. These results have considerable importance

for the design of parallel logic programming systems, and the implications are outlined and

discussed in the concluding chapter.

l have many people to thank for helping me with this research. First and most of all, l would like to

thank my supervisor, David Brailsford for ail his help and encouragement during my research.

l am very grateful to the following people for proof-reading sections, and in sorne cases all, of this

monograph and for their comments : Uri Baron, Steve Benford, David Brailsford, Mark O'Brien,

Sergio Delgado-Rannauro, Dave Elliman, Colin Higgins, Graem Ringwood, Andy Walker, and

Marion Windsor.

Marion Windsor, the secretary of the Department of Computer Science, University of Nottingham,

was particularl y hel pful throughout the course of this research.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

1 would like to thank the following members of the Department of Computing Science at the

University of Nottingham for providing a friendly and stimulating working environment, William

Armitage, Peter Cowan, David Evans, David Ford, Eric Foxley, Godwin Gwei, Leon Harrison,

Mike Heard, Roger Henry, Phillipa Hennessey, Emiko Hiraga, Kevin Hopkins, Anne Lomax,

Graeme Lunt, Julian Onions, William Shu, Hugh Smith, and Mary Tolley.

Special thanks are due to Simone Mahlenbrei who helped me at various times whilst 1 was putting

the finishing touches to this book at the European Computer-Industry Research Centre GmbH

(ECRC).

This research was funded by the UK Science and Engineering Research Council (SERC).

February 1992 Andrew Cheese

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Chapter 1 Introduction

Background. 1

Logic Programming 4

Developments in Prolog Implementation 9

Computer Architecture Developments ... 12

Parallelism in Logic Programs ... 12

Concurrent Logic Programming .. 14

Objectives and Contributions of this Research ... 24

Preview of Book Contents ... 25

Chapter 2 Parlog A Concurrent Logic Programming Language

Introduction .,. 27

Concurrency 27

Inter-Process Communication ... 27

Indeterminacy 29

Synchronization .. 30

Other Parlog Syntax and Operational Features ... 31

Example Programs .. 33

Compilation ., 35

Chosen Dialect 45

Chapter 3 A Fine-Grain Graph Reduction Model of Computation

Introduction .,. 48

Graph Reduction 49

The Computational Model 51

Nature ofPackets .. 52

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Packet Structure .. 52

Operational Semantics of the Model 54

Sharing of Computation 56

Packet Description Language 57

An Example 59

Selectors and Constructors 63

Remarks on the Model of Computation 64

Chapter 4 Implementing Parlog on a Packet-Rewriting Computational

Model

Introduction 65

The Implementation 65

Throttling 89

Evaluation ... 89

Summary .. 94

Chapter 5 The Multi·Sequential Coarse·Grain Approach

Multi-Sequential Architectures .. 95

Code Space ... 96

Data Space .. 96

Processing Element Structure .. 100

Environments .. 101

Task Data Structures ... 102

Control Data Structures ... 103

Management of Queue Data Structures 106

Load Balancing ... 109

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

Recovery from Resource Exhaustion III

Abstract Instruction Set ... 112

Simulation of Model ... 120

Summary .. 132

Chapter 6 Summary, Further Work and Conclusions

Introduction .. 133

The Packet-Rewriting Model ... 133

The Multi-Sequential Model.. 136

Comparison of the Packet-Rewriting and Multi-Sequential Models 138

Further Work .. 140

Conclusions ... 144

Appendix 1 Fine-Grain Execution ofmerge/3 ... 147

Appendix 2 A Physical Bit-Level Packet Representation 157

Appendix 3 PPM Instruction Set Listing ... 159

Appendix 4 Compiled Form ofmerge/3 for PPM ... 161

Bibliography ... 165

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Chapter 1 Introduction

Background

There is a growing recognition that there is a "software crisis" [3] in the sense that

software systems are becoming too complex for the available prograrnming languages

and tools to handle. There are numerous computer-related disasters which lead one to

believe that this is true [105]. These include reports of many Space Shuttle launch

failures because of faulty software, the Vancouver Stock Index losing 574 points over 22

months as a result of a software rounding eTTOr, an FI8 aircraft crashing because of a

missing exception condition, and Viking having a misaligned antenna caused by a faulty

code patch.

The range of widely used imperative programming languages and the bad program

ming styles they tend to encourage are frequently cited as a major cause of faulty

software. The meaning of the adjective "imperative" is "commanding". In fact, more

often than not, the only means of understanding an imperative language program is as an

ordered set of state-changing commands. This is because imperative programming

languages are based on the von-Neumann mode! of computation, whereby a processing

element is tightly-coupled with memory and executes a series of instructions guided by a

program counter w hich indicates the "next instruction" to be obeyed. The notion of glo

bal memory is inherent in such programming language designs and together with the use

of destructive assignment of new infonnation to be stored can cause unforseen side

effects leading to obscure program bugs. An example of this might occur when a global

and local variable differ by one character in their names and the global name is used by

mistake for the local name. This error would remain undetected because the

destructive-assignment statement is syntactically and semantically correct. In short, the

solving of a problem with an imperative programming language requires not only a

specification of what the solution is, but also a description of how to solve the problem.

The answer seems to lie in a paradigm which allows the programmer to state,

declaratively, a description of a solution to the problem at hand and lets the target

machinery perfonn the necessary computation. This philosophy has encouraged com

puter programmers to look towards the descriptive forrnalism of mathematical logic to

help them achieve this goal. The result is a family of so-called declarative languages. In

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

fact there are two camps of declarative programmers who support either the logic pro

gramming or the functional programming style. There are fundamental differences in

these two styles [44] but in both cases the resulting program consists of a set of assertive

equations and computation is the deduction of sorne property with respect to these asser

tions.

Declarative language programs can be understood by static analysis because the

meaning of any individual program segment is independent of the meaning of ail the

other textually separate parts. This, in turn, means that the semantics of the entire pro

gram is independent of the order of evaluation of these parts [97]. Therefore it is per

fectly safe to evaluate declarative programs using a paraUel computational mode!. AU

parallelism is implicit in the program, implying that the degree of concurrency exploit

able is limited only by the degree of inherent parallelism present in the program.

Functional programming languages are directional; that is, the inputs and outputs of

the relations they define are staticaUy deterrnined. As a result they utilise one-way pat

tern matching as a parameter passing mechanism. This is a drawback compared to the

lack of modality (nonspecification of whether arguments are inputs or outputs) which is

inherent in the logic programming paradigm. In the conventional imperative program

ming sense of parame ter passing, this means that arguments can be used as either inputs

or outputs, the correct mode being deterrnined at runtime by the logic programming sys

tem and not by the user. An example of this property is the append/3 (the notation

fin meaning fis a symbol of a structure of n arguments) relation allowing the user to

specify a program which can be used both to concatenate two lists and to split a li st into

two sublists.

The functional paradigm does enable very powerful and flexible data type systems

to be developed [16], allowing the user to define arbitrary types. The declarative and

operational semantics of a functional programming language are based upon the lambda

calculus [5] [25], and a reduction model of computation [172], respectively. A functional

programmer will think in terrns of functions and their evaluation. The most widely used

of functional programming languages is the functional subset of Lisp [182]. However,

there are now more powerful programming languages based on the lambda-calculus such

as Miranda [167], SML [76] [55], and HaskeU [171].

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

Logic programming languages are relational; a program is a conjunction of equa

tions each expressing a relation between objects of interest to the programmer. Each

equation is an implication stating that a property of an object or properties of a set of

objects, are conditional on other object properties being true. In order to determine

whether properties are true or false it is usual for the programmer to express sorne rela

tions between objects that are vacuously true. Each equation is called a "clause" and a set

of ordered clauses having the same relation name, "predicate symbol", is called a "rela

tion" or "procedure".

Logic programming systems employ "unification" as a parameter-passing mechan

ism. As an example consider unifying the head of a clause p (X, 2, Z) with a goal

p (l, Y, 3), where a goal is analagous to a procedure cali in conventional imperative

programming languages with two-way parameter passing, and variables are denoted by

lexical items beginning with a capital letter. The unification procedure is concerned with

finding substitutions of variables to make a set of terms equal. In the example the substi

tution would be { XII, YI 2, Z 13), where the notation v /t denotes that the vari

able v is bound to the term t. Unlike the case of executing functional programming

languages, it is possible to bind variables in the goal, e.g. y in the above example. This

enables logic programmers to make use of so-called "logical variables", that is, they are

allowed to instantiate variables to terms which are non-ground i.e. the terms contain vari

ables. For instance, consider the term request (5). The variable 5 can be bound to

another term message (info, Answer) which itself contains the variable Answer.

This powerful feature enables a relation to only deal with the part of a data structure it is

interested in, leaving "holes" to be filled in by other, more appropriate, relations. A prac

tical use of this is in building one-pass compilers. Conventionally compilers written in

imperative programming languages are two-pass. The first pass simply gathers up ail the

symbols in a program and makes a note of where they are in the program, so that on the

second pass these symbol references can be filled in correctly. If the compiler is written

in a logic programming language it suffices to leave the reference to the symbol as a vari

able which can be instantiated to the correct address later, when this has been deter

mined. The procedural and declarative semantics of logic programming languages have

foundations in theorem proving and predicate logic [99].

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

The declarative programming language paradigm has now been recognised as a

viable alternative to conventional imperative approaches. As a result of this, several

industrial organisations are now embarking on research programmes focusing on logic

programming. Examples of these are the European Computer-Industry Research Centre

(ECRC) in Munich, West Germany, funded jointly by Bull SA, Siemens and ICL [151]

[54]; the Software Technology Division at MCC in Texas, U.S.A.; the Institute of New

Generation Computer Technology (ICOT) which, although funded by the Japanese

govemment, most of the researchers are from industry [63]; and the Swedish Institute of

Computer Science (SICS) [176], which has been formed using 50% funding from the

Swedish govemment but with help from industry. There is still a long way to go, how

ever, before research results will reach the bulk of computer product consumers and until

that time the majority of computer users may remain unconvinced of logic

programming's potential.

Logic Programming

The state of logic programming is now arguably more advanced than that of the

functional paradigm. This can be traced to the spread of Prolog, both in academic circles

and industry [122] [123] [124] [125]. Logic programming language systems are more

usable than their functional programming counterparts. Quintus Prolog for instance, pro

vides a very good development environment incorporating modules, type-checking and

other tools [121].

Theoretical Background

In order to describe the logic programming paradigm, it is necessary to review both

the syntax and semantics of first-order predicate logic. Syntactically, first-order predicate

logic is defined by a language over sorne alphabet. This alphabet consists of variables,

constants, functions, predicates, connectives, quantifiers and punctuation symbols. The

last three classes of symbols are the same for any formula of the logic. The connectives

are -, /\, V, -) and H. Their intended meanings are "negation", "conjunction", "dis

junction", "implication" and "equivalence". The quanti fiers are represented by the sym

bols '<:l, meaning universal quantification i.e. "for ail", and 3 meaning existential

quantification i.e. "there exists". The punctuation symbols are "(", ")" and", ". Vari

ables are normally represented by capital letters, e.g. x, Y, and z. Constants are

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

represented by letters near the stan of the Roman alphabet such as a, band c. Function

symbols are denoted by letters chosen from a third of the way through the Roman alpha

bet such as f, g, and h. Predicate symbols are denoted by letters chosen from two

thirds of the way through the Roman alphabet, e.g. p, q, and r.

The terms of first-order predicate logic are defined inductively. All variables are

terms, ail constants are terms, and if fis a function (or functor) of arity n and tl, ... ,

tn are terms then f (tl, ... , tn) is a term. The well-formed formulas of first-order

predicate logic are also defined inductively. If p is a predicate symbol of arity n and

tl, ... , tn are terms, then p (tl, ... , tn) is a formula. In this specifie case the for

mula is called an "atom" (in the logic programming world, as opposed to theoretical

logic studies, atom also refers to a constant). If F and G are formulas then so are - F, F

/\ G, F v G, F ~ G, and F H G. If F is a formula and x is a variable then V x F

and 3 x F are formulas.

In the quantified formulas V X F and 3 x F the variable x is said to be "bound".

In general, ail occurrences of a variable following a quantifier which are also present in

the quantified formula are "bound". Any variable present in a formula which is not

bound is said to be "free". For instance, in the formula Vx p (X, Y), x is bound and

y is free. A formula with no free occurrences of variables is said to be "closed".

A "literai" is an atom or the negation of an atom. A "positive literai" is simply an

atom and a "negative literai" is the negation of an atom. A "clause" is a closed univer

sally quantified disjunction of literais. That is, it is of the form

VXI ... VXn (LI v ... v Lm)

where each Li is a literai and each Xi is a variable. Logic programs consist of a set of

clauses. Thus a special notation can be adopted to make programs easier to read. The

clause

VXI ... VXn (Al v .,. v Aj v -BI v ... v -Bk)

can be represented in this new semantically equivalent clausal form notation as

Al, ... , Aj ~BI, ... , Bk

where ail the variables, Xl, ... , Xn, are assumed to be universally quantified. The

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

commas in the consequent, Al, ... , A j, denote disjunction and the commas in the

consequent, BI, ... , Bk, denote conjunction.

A "program clause" is a clause containing exactly one positive literal and takes the

form A +- BI, ... , Bk. Ais called the "head" and BI, ... , Bk the "body" of the

program clause. A "unit clause" is a program clause with an empty body, that is, it takes

the form A+-. The informal meaning of a program clause such as A +- BI, ... , Bk

is that if for every assignment of each variable in the above clause, the conjuncts

BI, ... , Bk are true then A is true. Program clauses with non-empty bodies are "con

ditional" and unit clauses, with empty bodies, are "unconditional". The informai intended

meaning of the unit clause A +- is that, for each assignment of each variable in the

clause, the literai A is true. A "goal clause" contains no positive literais and is of the

form +- BI, ... , Bk. Each Bi is called a "subgoal" of the clause. The "empty

clause", with no antecedent or consequent, is understood as meaning a contradiction. A

"Hom clause" is either a program clause or a goal clause, that is, there is at most one

positive literai present.

Most logic programming language dialects are based upon the Hom clause subset of

first-order predicate logic. One of the properties of first-order predicate logic is that it has

equivalent operational and declarative semantics. The procedural meaning of a theory is

given by a "proof theory", that is, it is a corresponding "proof tree". A proof may

proceed by negating the formula that is to be proved and trying to obtain a contradiction

using the clauses making up the program, thus concluding that the original unnegated

formula is a logical consequence of the program.

A proof may use use of a procedure known as "resolution" to construct its deriva

tion. A logic programming system makes use of resolution to try and reduce the given

query (a goal clause, in fact the negation of what is actually to be proved) to the empty

clause. It does this by fust selecting a literai from the goal clause and attempting to unify

it with the head of a program clause. If this succeeds the original literai is replaced by ail

the body literais giving a new goal clause. The unifying substitution is then applied to

this new clause and the whole process reiterates. If the attempted unification should fail,

the system will attempt to select a literai again. This chosen literai could be the same one

again, in which case an alternative clause for the predicate would be used, and unification

attempted. This whole process repeats until the empty clause is derived or until it is

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

discovered that there is no route available for the computation to proceed and il would

then be concluded that the original goal clause is not a logical consequence of the pro

gram. The current goal clause is called the "resolvant".

Consider the effect of resolution on the goal clause and program clauses given

below.

~ p(X, 1), q(X, Y).

p(2, Z).

q (l, 1).

q (2, 2).

The first thing the resolution process does is to select an atom from the current goal

clause. In the programming language Prolog the leftmost atom is chosen. Assume then

that this is the "selection function" used, meaning that the atom p (X, 1) is selected.

This unifies with the fust program clause giving a substitution {Xl 2, Z Il} which

means that the variables x and z are bound to the constants 2 and 1. Applying this

substitution to the CUITent goal gives us a new resolvant q(2, Y). There are two pro

gram clauses defining the procedure q/2. Unification of the CUITent goal with the fust of

them fails because the constants 1 and 2 are unequa!. Unification does, however,

succeed using the second clause for q/2 giving a substitution {YI 2 }. The current goal

is now empty and the resolution procedure succeeds and terminates.

An "interpretation" of alogie program consists of sorne domain of discourse over

which variables can range. Ali constants of the program are assigned an element of the

domain. Ali functions are assigned a mapping over the domain. Ali predicates are

assigned a relation on the domain. Ali quanti fiers and connectives have an apriori fixed

meaning. Thus an interpretation is used to give meaning for every symbol in a program.

An interpretation in which a formula expresses a true statement is said to be a "model" of

the formula. The programmer usually has an interpretation in mind when writing a pro

gram. This is the "intended interpretation", which, if it meets the specification, will be a

mode!.

Consider the formula 'd x 3 Y P (X, Y) and the interpretation 1 where the domain

of discourse is the non-negative integers and p is assigned the relation <. 1 is then a

model for the formula, as the formula expresses the true statement that "for every non-

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

8

negative integer, there exists another non-negative integer which is strictly greater than

the chosen integer".

The declarative semantics of a logic program is given by characterising a particular

model of the program. Intuitively, this is the one containing the minimal amount of infor

mation whilst still remaining a mode!. This is because any extra information in the model

can only reflect on formulas which are not derivable from the program and thus, are

irrelevant. This model is known as the "least model".

A set of clauses s is said to be "satisfiable" if there is an interpretation which is a

model for s. Assume a logic program P and a goal clause G, then the problem is

determining the unsatisfiability of P u {G}. This would seem to imply that every

interpretation of P u (G} must not be a mode!. There are, however, an infinite number

of possible interpretations and it would not be feasible to verify that all of them give rise

to unsatisfiability.

Fortunately, it is possible to identify a smaller class of interpretations which need

only be considered. These are known as "Herbrand interpretations" [77]. Informally a

Herbrand interpretation is one in which the domain of discourse consists of ail the sym

bols present in the program. Each symbol maps to itself, and variables range over the

symbols, and terms which can be constructed from these symbols.

Consider the program below

p(X) r q(f(a), g(X)).

r (Y) r.

We now give its Herbrand Interpretation. The domain of discourse is the set

(a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), ... }

Constants are assigned themselves; thus a is assigned a. The functions f and g are

assigned themselves taking arguments from the domain of discourse.

This property effectively means that deduction systems only have to work at the

level of symbol manipulation and do not have to worry about what the user might have

intended the symbols constituting the program to mean.

A Herbrand Interpretation for a program which is a model is a "Herbrand Model".

The meaning of a logic program should consist of just those formulas which are logically

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

implied by the program. The declarative semantics of a program are therefore given by

the "Ieast Herbrand mode)". This consists of just those atoms which are logical conse

quences of the program.

This underlying mathematics provides a formai basis for the construction of correct

programs. This in turn implies there are sound methods for proving propenies of pro

grams and enables transformation methods to be developed. A typical application is the

transformation of a program, written merely as a prototype specification of a solution to a

problem, into a more efficient semantically equivalent one.

The standard unification procedures utilised by most Prolog implementations are

purely syntactic. Terms are equal if they are syntactically identical with the appropriate

unifying substitution applied. However, because of logic programming's mathematical

foundations, it is possible to develop new types of languages called "constraint logic pro

gramming languages" [173] [82] [50] [51], which enable the user to supply a constraint

solver which works in the user's intended domain of interpretation, for example real

numbers. This, together with the current work on implementation, will lead to the

development of more powerfullogic programming systems than those around today.

Developments in Prolog Implementation

The development of logic programming owes much to the programming language

Prolog [34]. In 1972 Phillipe Roussel designed the fust Prolog interpreter at the

Université d'Aix Marseilles. In fact, the name Prolog was suggested by Roussel's wife

Jacqueline, as an abbreviation for programmation en logique. It was written in Algol-W

and employed the clause-copying technique. This means that whenever a clause is

selected as a candidate for reduction, a copy of it is made. This is a simple, albeit

inefficient, method of avoiding name clashes with variables. Roussel then visited Edin

burgh and learned of Boyer and Moore's structure-sharing approach for representing data

structures [Il]. U sing this method, data structures are represented as skeletons with an

associated set of variables which can be instantiated later. This way the skeleton of a data

structure can be shared leaving the creation and binding of variables as the onl y expense.

On returning to Marseilles, Roussel started work together with two of his students, H.

Meloni and G. Battani, on a Fortran version of the original interpreter using structure

sharing [132].

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

