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Preface

Logic programming has been proposed as a programming methodology that may help in producing
more reliable and maintainable computing systems than those presently in service. At the samne time
there has been a trend for making faster computers by building machines using multiple CPUs. Asa
result of these two factors a family of concurrent logic languages has been developed to tackle the
|_pr0blcms of programming these parallel computer architectures. It is important that the
@nplementations of such computer languages should be efficient, otherwise the benefits of

%a.rallclism will be lost.
LL

(_Fhis monograph concentrates on the programming language Parlog and on computational models
“Tor its efficient execution. Two such models are developed, one a fine-grain Packet-Rewriting
(“thodel and the other more coarse-grained, the Multi-Sequential model. Both models are reviewed in
Lidetail and software simulators have been built for them. Results from the simulations show that the

ulti-Sequential model is very promising whereas the Packet-Rewriting model does not appear to
| Isbitable for the efficient execution of logic languages. These results have considerable importance
Ttor the design of parallel logic programming systems, and the implications are outlined and

discussed in the concluding chapter.
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Chapter 1 Introduction

Background

There is a growing recognition that there is a “software crisis™ [3] in the sense that
software systems are becoming too complex for the available programming languages
and tools to handle. There are numerous computer-related disasters which lead one to
believe that this is tue [105]. These include reports of many Space Shuttle launch
failures because of faulty software, the Yancouver Stock Index losing 574 points over 22
months as a result of a software rounding error, an FI8 aircraft crashing because of a
missing exception condition, and Viking having a misaligned antenna caused by a faulty

code patch.

The range of widely used imperative programming languages and the bad program-
ming styles they tend to encourage are frequently cited as a major cause of faulty
software. The meaning of the adjective “imperative™ is “commanding”. In fact, more
often than not, the only means of understanding an imperative language program is as an
ordered set of state-changing commands. This is because imperative programming
languages are based on the von-Neumann model of computation, whereby a processing
clement is tightly-coupled with memory and executes a series of instructions guided by a
program c¢ounter which indicates the “next instruction” to be obeyed. The notion of glo-
bal memory is inherent in such programming language designs and together with the use
of destructive assignment of new information to be stored can cause unforseen side-
effects leading to obscure program bugs. An example of this might occur when a global
and local variable differ by one character in their names and the global name is used by
mistake for the local name. This emor would remain undetected because the
destructive-assignment statement is syntactically and semantically correct. In short, the
solving of a problem with an imperative programming language requires not only a

specification of what the solution is, but also a description of Aow 10 solve the problem,

The answer seems to lic in a paradigm which allows the programmer 10 state,
declaratively, a description of a solution to the problem at hand and lets the target
machinery perform the necessary computation. This philosophy has encouraged com-
puter programimers to look towards the descriptive formalism of mathematical logic to

help them achicve this goal. The result is a family of so-called declarative languages. In
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fact there are two camps of declarative programmers who support either the logic pro-
gramming or the functional programming style. There are fundamental differences in
these two styles [44] but in both cases the resulting program consists of a set of assertive
equations and computation is the deduction of some property with respect to these asser-

tions,

Declarative language programs can be understood by static analysis because the
meaning of any individual program segment is independent of the meaning of all the
other textually separate parts. This, in turn, means that the semantics of the entire pro-
gram is independent of the order of evaluation of these parts [97]. Therefore it is per-
fectly safe to evaluate declarative programs using a parallel computational model. All
parallelism is implicit in the program, impiying that the degree of concurrency exploit-
able is limited only by the degree of inherent parallelism present in the program.

Functional programming langnages are directional; that is, the inputs and outpuits of
the relations they define are statically determined. As a result they utilise one-way pat-
tern matching as a parameter passing mechanism. This is a drawback compared to the
lack of modality (nonspecification of whether arguments are inputs or outputs) which is
inherent in the logic programming paradigm. In the conventional imperative program-
ming sense of parameter passing, this means that arguments can be used as either inputs
or outputs, the correct mode being determined at runtime by the logic programming sys-
tem and not by the user. An example of this property is the append/3 (the notation
f/n meaning £ is a symbol of a structure of n arguments) relation allowing the user ©
specify a program which can be used both to concatenate two lists and to split a list inta

two sublists,

The functional paradigm does enable very powerful and flexible data type systems
to be developed [16], allowing the user to define arbitrary types. The declarative and
operational semantics of a functional programming language are bascd upon the lambda
calculus [5] [25]. and a reduction model of computation [172], respectively. A functional
programmer will think in terms of functions and their evaluation. The most widely used
of functional programming languages is the functional subset of Lisp [182]). However,
there are now more powerful programming languages based on the lambda-calculus such
as Miranda [167], SML | 76] [55], and Haskell [171].
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Logic programming languages are relational; a program is a conjunction of egua-
tions each expressing a relation between objects of inferest to the programmer. Each
equation is an implication stating that a property of an object or properties of a set of
objects, are conditional on other object properties being true. In order to determine
whether properties are true or false it is usual for the programmer to express some rela-
tions between objects that are vacuously true, Each equation is called a “clause” and a set
of ordered clauses having the same relation name, “predicate symbol”, is called a “rela-

tion” or “procedure”.

Logic programming systems employ “unification™ as a parameter-passing mechan-
ism. As an example consider unifying the head of a clause p(X, 2, 2z} with a goal
p(1, ¥, 3}, where a goal is analagous to a procedure call in conventional imperative
programming languages with two-way parameter passing, and variables are denoted by
lexical items beginning with a capital letter. The unification procedure is concerned with
finding substitutions of variables to make a set of terms equal. In the example the subst-
tution would be { x/1, Y/2, 2/3 }, where the notation v/t denotes that the vari-
able v is bound to the term t. Unlike the case of executing functional programming
languages, it is possible to bind variables in the goal, e.g. Y in the above example. This
enables logic programmers to make use of so-called “logical variables™, that is, they are
allowed o instantiate variables to terms which are non-ground 1.e. the terms contain vari-
ables. For instance, consider the term request {S}. The variable s can be bound to
another term message{info, Answer) which itsclf contains the variable Answer,
This powerful feature enables a relation to only deal with the part of a data structure it is
interested in, leaving “holes” to be filled in by other, more appropnate, relations. A prac-
tical use of this is in building one-pass compilers. Conventionally compilers written in
imperative programming languages are two-pass. The first pass simply gathers up all the
symbols in a program and makes a note of where they are in the program, so that on the
second pass these symbol references can be filled in correctly, If the compiler is written
in a logic programming language it suffices to leave the reference to the symbol as a varni-
able which can be instantiated to the correct address later, when this has been deter-
mined. The procedural and declarative semantics of Jogic programming languages have

foundations in theorem proving and predicate logic [99].
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The declarative programming language paradigm has now been recognised as a
viable alternative to conventional imperative approaches. As a result of this, several
industnal organisations are now embarking on research programmes focusing on logic
programming. Examples of these are the European Computer-Industry Research Centre
(ECRC) in Munich, West Germany, funded jointly by Bull SA, Siemens and ICL [151]
[54]; the Software Technology Pivision at MCC in Texas, U.S.A.; the Institute of New
Generation Computer Technology (ICOT) which, although funded by the Japanese
government, most of the researchers are from industry [63]; and the Swedish Institute of
Computer Science (SICS) [176), which has been formed using 50% funding from the
Swedish government but with help from industry. There is still a long way to go, how-
ever, before research results will reach the bulk of computer product consumers and until
that time the majority of computer users may remain unconvinced of logic

programiming’s potential.

Logic Programming

The state of logic programming is now arguably more advanced than that of the
functional paradigm. This ¢an be traced to the spread of Prolog, both in academic circles
and industry [122] [123] [124] [125]). Logic programming langnage systems are more
usable than their functional programming counterparts. Quintus Prolog for instance, pro-
vides a very good development environment incorporating medules, type-checking and

other tools [121].

Theoretical Background

In order to describe the logic programming paradigm, it is necessary to review both
the syntax and semantics of tirst-order predicate logic. Syntactically, first-order predicate
logic is defined by a language over some alphabet. This alphabei consists of vartables,
constants, functons, predicates, connectives, quantifiers and punctuation symbols. The
last three classes of symbols are the same for any formula of the logic. The connectives
are ~, A, v, = and ©. Their intended meanings are “negation”, “conjunction”, “dis-
junction”, “implication” and “equivalence”. The quantifiers are represented by the sym-
bols ¥, meaning universal quantification ie. “for all”, and 3 meaning existential
quantification i.e. “there exists”. The punctuation symbols are “ (", “}” and **, ”. Vari-

ables are normally represented by capital letters, e.g. ¥, Y, and 2Z. Constants are
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reprasented by letters near the start of the Roman alphabet such as a, b and c. Function
symbols are denoted by letters chosen from a third of the way through the Roman alpha-
bet such as £, g, and h. Predicate symbols are denoted by letters chosen from two-
thirds of the way through the Roman alphabet, €.g. p, g,and r.

The terms of first-order predicate logic are defined inductively, All variables are
terms, all constants are terms, and if f is a function (or functor) of arity n and t1, ...,
tn are termus then f£(t1, ..., tn} is a term. The well-formed formulas of first-order
predicate logic are also defined inductively. If p is a predicate symbol of arity n» and
t1, .., tn are terms, then p{tl, ..., tn} is a formula. In this specific case the for-
mula is called an “atom™ (in the logic programming world, as opposed to theoretical
logic studies, atom also refers 1o a constant). If Fand G are formulas then soare ~¥, F
A G Fv G F = Gand F « 6 If £isaformala and X is a variable then VX F

and 31X r are formulas.

In the quantified formulas ¥ X F and 3X F the variable X is said to be “bound”.
In generat, all occurrences of a variable following a quantifier which are also present in
the quantified formula are “bound”. Any variable present in a formula which is not
bound is said to be “free”. For instance, in the formula VX p(X, ¥}, X is bound and
Y is free. A formula with no free occurrences of variables is said 1o be “closed”.

A "literal” is an atom or the negation of an atom. A “positive literai” is simply an
atom and a “negative literal” is the negation of an atom. A “clause™ is a closed univer-

sally quantified disjunction of literals, That is, it is of the form
VX1 ... V¥n (L1 v ... v Lm)

where each Li is a literal and each Xi is a variable. Logic programs consist of a set of
clauses. Thus a special notation can be adopted to make programs easier to read. The

clause

VX1 ... ¥¥n (Bl v ... Vv Aj v ~Bl v ,.. v ~Bk)

can be represented in this new semantically equivalent clausal form notation as
Al, ..., Aj « B1, ..., Bk

where all the variables, x1, .., Xn, arc assumed to be universally guantified. The
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commas in the consequent, Al, ..., A3, denote disjunction and the commas in the

consequent, Bl, ..., Bk, denote conjunction.

A “program clause” is a clause containing exactly one positive literal and takes the
form A « B1, ..., Bk. Aiscalled the “head” and B1, ..., Bk the “body” of the
program clause. A “unit clause” is a program clause with an empty body, that is, it rakes
the form A « . The informal meaning of a program clause such as A « B1, ..., Bk
is that if for every assignment of each varable in the above clause, the conjuncts
Bl, ..., Bk aretrue then A is true. Program clauses with non-empty bodies are “con-
ditional” and unit clauses, with empty bodies, are “unconditional”. The informal intended
meaning of the unit clause A « is that, for each assignment of each variable in the
clause, the literal A is true. A “goal clause” contains no positive literals and is of the
foorm « Bl, ..., Bk. Each Bi is called a “subgoal” of the clause. The “empty
clause”, with no antecedent or consequent, is understood as meaning a contradiction. A
“Horn clause™ is either a program clause or a goal clause, that is, there is at most one

positive literal present.

Most logic programming language dialects are based upon the Horn clause subset of
first-order predicate logic. One of the properties of first-order predicale logic is that it has
equivalent operational and declarative semantics. The procedural meaning of a theory is
given by a “proof theory”, that is, it is a corresponding “proof tree”. A proof may
proceed by negating the formula thart is to be proved and trying 10 obtain a contradiction
using the clauses making up the program, thus concluding that the original unnegated

formula is a logical consequence of the program,

A proof may use use of a procedure known as “resolution” 10 construct its deriva-
tion. A logic programming system makes use of resolution to try and reduce the given
query (a goal clause, in fact the negation of what is actually to be proved) 10 the empty
clause. It does this by first selecting a literal from the goal clause and attempting to unify
it with the head of a program clause. If this succeeds the original literal is replaced by all
the body literals giving a new goal clause. The unifying substitution is then applied to
this new clause and the whole process reiterates. If the attempted unification should fatl,
the system will attempt to select a literal again. This chosen literal could be the same one
again, in which case an aliernative clause for the predicate would be used, and unification

attempied. This whole process repeats until the empty clause is derived or until it is
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discovered that there is no route available for the computation to proceed and it would
then be concluded that the original goal clause is not a logical consequence of the pro-

gram. The current goal clause is called the “resolvant™.

Consider the effect of resolution on the goal clause and program clauses given

below.
« p(X, 1), g(X, Y).

pl2, 2).
gfl, 1.
ql2, 2).

The first thing the resolution process does is to select an atom from the current goeal
clause. In the programming language Prolog the leftmost atom is chosen. Assume then
that this is the “selection function” used, meaning that the atom p (X, 1} is selected.
This unifies with the first program clause giving a substitution (¥/2, 2/1} which
means that the variables x and 2z are bound to the constants 2 and 1. Applying this
substitution to the current goal gives us a new resolvant (2, Y). There are two pro-
gram clauses defining the procedure q/2. Unification of the current goal with the first of
them fails because the constants 1 and 2 are unequal. Unification does, however,
succeed using the second clause for q/2 giving a substitution {Y/2}. The current goal

is now empty and the resolution procedure succeeds and terminates.

An “interpretation” of a logic program consists of some domain of discourse over
which variables can range. All constants of the program are assigned an element of the
domain. All functions are assigned a mapping over the domain. All predicates are
assigned a relation on the domain. All quantifiers and connectives have an apriori fixed
meaning. Thus an interpretation is used to give meaning for every symbol in a program.
An interpretation in which a formula expresses a true statement is said to be a “model” of
the fermula. The programmer usuvally has an interpretation in mind when writing a pro-
gram. This is the “intended interpretation”, which, if it meets the specification, will be a

model.
Consider the formula ¥X 3y p{X, Y) and the interpretation / where the domain

of discourse is the non-negative integers and p is assigned the relation < . fis then a

model for the formula, as the formula expresses the true statement that “for every non-
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negative integer, there exists another non-negative integer which is strictly greater than
the chosen integer”.

The declarative semantics of a logic program is given by characterising a particular
model of the program. Intuitively, this is the one containing the minimal amount of infor-
mation whilst still remaining a model. This is because any extra information in the model
can only reflect on formulas which are not derivable from the program and thus, are

irrelevant. This model is known as the “least model”.

A set of clauses 3 is said to be “satisfiable™ if there is an interpretation which is a
model for 5. Assume a logic program P and a goal clause G, then the problem is
determining the unsatisfiability of P « {G}. This would seemn to imply that every
interpretation of P w {G} must not be a model. There are, however, an infinite number
of possible interpretations and it would not be feasible to verify that all of them give rise
to unsatisfiability.

Fortunately, it is possible to identify a smaller class of interpretations which need
only be considered. These are known as “Herbrand interpretations” [77]. Informally a
Herbrand interpretation is one in which the domain of discourse consists of all the sym-
bols present in the program. Each symbeol maps to itself, and variables range over the

symbols, and terms which can be constructed from these symbois.

Consider the program below

plX} « qifia), g(x)).

T{Y} «.

We now give its Herbrand Interpretation. The domain of discourse is the set

fa, f£{a), gta), fif(a}}, figfa)), glf{a)), glgfay), ...}

Constants are assigned themselves; thus a is assigned a. The functions £ and g are

assigned themselves taking arguments from the domain of discourse.

This property effectively means that deduction systems only have to work at the
level of symbol manipulation and do not have to worry about what the user might have
iatended the symbols constituting the program to mean.

A Herbrand Interpretation for a program which is a model is a “Herbrand Model™.

The meaning of a logic program should consist of just those formulas which are logically
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implied by the program. The declarative semantics of a program are therefore given by
the “least Herbrand model™. This consists of just those atoms which are logical conse-

quences of the program,

This underlying mathematics provides a formal basis for the construction of correct
programs. This in turn implies there are sound methods for proving properties of pro-
grams and enables transformation methods to be developed. A typical application is the
transformation of a program, written merely as a prototype specification of a solution to a

problem, into a more efficient semantically equivalent one.

The standard unification procedures utilised by most Prolog implementations are
purely syntactic. Terms are equal if they are syntactically identical with the appropriate
unifying substitution applied. However, because of logic programming’s mathematical
foundations, it is possible to develop new types of languages called “constraint logic pro-
gramming languages™ [173] [82] [50] [51], which enable the user to supply a constraint-
solver which works in the user’s intended domain of interpretation, for example real
numbers. This, together with the cummenm: work on implementation, will lead to the

development of more powerful logic programming systems than those around today.

Developments in Prolog Implementation

The development of logic programming owes much to the programming language
Prolog (34). In 1972 Phillipe Roussel designed the first Prolog interpreter at the
Université d’Aix Marseilles. In fact, the name Prolog was sugpested by Roussel’s wife
Jacqueline, as an abbreviation for programmation en logique. It was written in Algol-W
and employed the clause-copying technique. This means that whenever a clause is
selected as a candidate for reduction, a copy of it is made. This is a simple, albeit
inefficient, method of avoiding name clashes with variables. Roussel then visited Edin-
burgh and learned of Boyer and Moore’s structure-sharing approach for representing data
structures |11]. Using this method, data structures are represented as skeletons with an
associated set of variables which can be instantiated later. This way the skeleton of a data
structure can be shared leaving the creation and binding of variables as the only expense.
On returning to Marseilles, Roussel started work together with two of his students, H.
Meleni and G, Battani, on a Fortran version of the original interpreter using structure
sharing [132].





