
H. P. Zima (Ed.)

Parallel Computation
First International ACPC Conference
Salzburg, Austria, September/October 1991
Proceedings

Springer-Verlag

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

591

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

H. P. Zima (Ed.)

Parallel Computation
First International ACPC Conference
Salzburg, Austria, September 30 - October 2, 1991
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

ccoi _691

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Digital Equipment Corporation GmbH Campusnahes Forschungszentrum (Vienna)
IBM Austria (Vienna)
Sony Austria GmbH (Anif, Salzburg)
MASPAR Distributor AG (Zürich-Oberengstringen, Switzerland)
Intel Corporation Ltd. (Swindon, UK)
nCUBE Deutschland GmbH (Munich)
Bacher Electronics GmbH (Vienna)
SiliconGraphics Computer Systems (Grasbrunn-Neukaferloh)
Cray Research GmbH (Munich)
Cray Research Inc.(USA)
Meiko Limited (Bristol, UK)
Parsytec (Aachen)
Floating Point System GmbH (Riemerling)
Convex GmbH (Frankfurt)
Control Data GmbH (Vienna)
Emco Maier and Co. (Hallein)

Vienna, March 1992 Hans P. Zima

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Scalable Cache Coherence for Shared Memory Multiprocessors 1
M. Thapar, BA. Delagi, MJ. Flynn

New Program Restructuring Technology . 13
M. Wolfe

Data Parallel Program Design . 37
T.G. Lewis, R. Currey, l. Liu

A Powerful High-Level Debugger for Parallel Programs . 54
Ch. Caerts, R. Lauwereins, lA. Peperstraete

The PCPIPFP Prograrnming Models on the BBN TC2000 65
ED. Brooks Ill, B.C. Gorda, K.H. Warren

Knowledge-Based Parallelization for Distributed Memory Systems 77
B.M. Chapman, HM. Herbeck

Parallelization for Multiprocessors with Memory Hierarchies. 89
M. Gerndt, H. Moritsch

Trace View: A Trace Visualization Tool . . . 102
AD. Malony, D.H. Hammerslag, DJ. lablonowski

Parallel and Distributed Prograrnming With ParMod-C 115
A. Weininger, Th. Schnekenburger, M. Friedrich

Code Generation for a Data Paralle1 SIMD Language. 127
P. Brezany, V. Sipkova

Data Structures for Optimizing Programs with Explicit Paralle1ism 139
M. Wolfe, H. Srinivasan

MODULA-S: A Language to Exploit Two Dimensional Parallelism 157
W. Diestelkamp, H. Bi, A. Bottcher

MODULA-2* and Its Compilation 169
M. Philippsen, W.F. Tichy

ADAPTing Fortran 90 Array Programs for Distributed Memory Architectures 184
1.H.Merlin

Evolution of Massive Parallel Compute Servers from a Research Object to a
Production Pool . 201
M.H.Reymond

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Processor Scheduling in Multiprocessor Systems.
S.K. Tripathi, G. Serazzi, D. Ghosal

Multipacket Routing on Rings.
F. Makedon, A. Simvonis

Massively ParaUel Processing in High Energy Physics:
The CERN-MPPC Project.
G. Vesztergombi, F. Rohrbach

A Heuristic Algorithm for Dynamic Task Allocation in
Highly ParaUel Systems .
H.-U. Heiss, R. Wiesenfarth

Analysis of Parallel Lisp Programs Based on a Trace Mechanism.
H. Ilmberger, S. Thürmel

A Distributed Implementation of Flat Concurrent Prolog on
Multi-Transputer Environments .
U. Glasser, G. Hannesen, M. Karcher, G. Lehrenfeld

Negation in Conclog
J.-M. Jacquet

Symbolic Computation and ParaUel Software.
P.S. Wang

On the Para11elization ofCharacteristic-Set-Based Aigorithms
D. Wang

Multiplication as Parallel as Possible .
P. Lippitsch, K.C. Posch, R. Posch

On the Existence of an Efficient ParaUel Aigorithm for a
Graph Theoretic Problem .
J. Zerovnik

On the Multi-Threaded Computation of Modular Polynomial
Greatest Common Divisors
W. Küchlin

A Buchberger Algorithm for Distributed Memory Multiprocessors
DJ. Hawley

Computational Biology on Massively Parai lei Machines .
K. Schulten

Time-ParaUel Multigrid in an Extrapolation Method for Time-Dependent
Partial Differentiai Equations
G. Horton, R. Knirsch

208

226

· 238

252

266

277

289

316

338

350

· 359

369

385

391

· 401

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

Parallelization of Simulation Tasks: Methodology - Implementation -
Application
F. Breitenecker, G. Schuster, J. Husinsky, J. Fritscher

Parallel Algorithms for Stress Analysis on Shared-Memory
Multiprocessors
H. Adeli, O. Kamal

Elastic Load-Balancing for Image Processing Algorithms.
S. Miguet, Y. Robert

· 412

· 426

· 438

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Scalable Cache Coherence for
Shared Memory Multiprocessors

Manu Thapar
Digital Equipment

Corporation
and

Stanford University

Bruce A. Delagi
Sun Microsystems

and
Stanford University

Michael J. Flynn
Stanford University

701 Welch Road, Palo Alto, CA 94304, USA

Ab st ract

This paper presents a performance analysis of a new directory based cache co·
herence protocol. We compare the full y mapped centralized directory protocol with
a distributed directory protocol developed by us. The distributed directory pro­
tocol is based on a linked list of caches and is more scalable in terms of cost and
performance. It does not require the network to preserve the order of messages and
aJIows adaptive routing so that network performance may be more robust. Simu­
lation results show that the distributed directory protocol has better performance
than the centralized directory protocol for the benchmarks we have analyzed.

1 Introduction

In a shared memory multiprocessor system, each processor usually has an associated
cache. If these multiple caches are aIJowed to simultaneously have copies of a given
memory location, a mechanism must exist to ensure that ail copies remain consistent
when the contents of that memory location are modified. This is known as the cache
coherence problem, which is an important and weil known problem in shared memory
multiprocessors. "Snoopy" cache coherence protocols are weil understood for bus-based
shared memory architectures [2J. These protocols require that each cache watch ail traffic
on the bus and take appropriate action for addresses that are present in that cache.
Addresses are, in effect, transrnitted to each cache by global broadcast. The shared bus
limits the number of processors to the number that can be connected to the bus without
saturating it. To support sea/able shared memory architectures, the cache coherence
protocol must work in the absence of a global broadcast mechanism. Centralized directory
based schemes [1, 4J are a possible solution in this environment. More recently, protocols
based on a linked list of caches have been proposed [11, 8J. In this paper we compare the

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

NODEn

Figure 1: The basic architecture

fully mapped centralized direct ory protocol [4] with a distributed direct ory protocol [11]
that we have developed.

In the distributed direct ory protocol, the information about which caches have copies
of the data is decentralized and distributed among the cache tines. Our implementation,
tike the fully mapped centralized directory scheme, tracks any number of cache copies and
never requires invalidates to be sent to ail caches in the system. It is scalable to larger
systems and has better performance than the fully mapped directory based coherence
scheme. In the fully mapped scheme, the size of the memory required to hold the state
information is O(M N), where M is the size of main memory and N is the number of
caches. In our scheme, on the other hand, the size of the memory required to hold the
state information is only O(Mlog N). We do not assume that the interconnection network
preserves the order of messages and thus allow adaptive routing. The proto col also allows
an efficient implementation of locks [ll].

2 Centralized Directory Protocols

We assume a very general computing system structure in our description of the protocols.
Figure 1 describes this basic architecture. Each node consists of one or more processing
elements (P), a cache (C), an interconnect controller (ICC) and part of the distributed
shared memory (DSM). The DSM includes the directory.

In the directory based proto cols there is a directory "tag" associated with each tine in
main memory. This directory is used to hold information about which caches have copies
of the tine. In the fully mapped centralized' directory scheme, the directory has N valid
(or "present") bits per tine, where N is the number of caches. The amount of storage
needed for the directory in the fully mapped scheme is thus O(MN), where M is the size

1 We use the term centralized sinee the information about caches that have copies of a memory line is
located at one place. The directory tags are an extension of the lines in the DSM and are located on the
same node as the corresponding lines in main memory.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

of main memory. If a cache has a copy of the line, the present bit corresponding to that
cache is set. The directory also has a dirty bit. If the dirty bit is set, only one of the
caches can have a copy of the line.

On a read miss, the direct ory is checked to see if the block is dirty in another cache.
If so, consistency is maintained by copying the dirty block back to the memory before
supplying the data. The reply is thus serialized through the directory. To ensure correct
operation, the memory line has to be "locked" by the directory controller until the write­
back signal is received from the cache with the dirty block. No other coherency related
operations on this line may be undertaken while a line is locked. If the line is not dirty
in another cache, then data is supplied from the main memory and the corresponding
present bit is set in the directory.

On a write miss, the central directory is checked to determine the state of the line.
If the line is dirty in another cache, then the line is first flushed from that cache before
supplying the data. Again, the reply is serialized through the directory. The memory line
is locked while this is being done. If the line is clean in other caches, invalidate signaIs
are sent to the caches. The memory line is locked until acknowledgements are received
from the caches. The data can then be supplied to the requesting cache. Thus, if the line
is present in one other cache on a write miss, four network operations are required before
the write can be considered to be complete. These include:

1. The miss signal that is sent to the main memory.

2. The invalidate or write-back signal that is sent to the cache that has the data in
clean or dirty state respectively.

3. The invalidate-acknowledge or write-back-data signal that lS sent from the cache
that has the data in clean or dirty state respectively.

4. The write-miss-reply is sent from the main memory to the requesting cache.

The serialization of responses through the direct ory and the locking of lines by the
directory controller impacts the performance of the cache coherence scheme. Requests that
arrive while a line is locked have to be either buffered at the directory, or else bounced
back to the source to be reissued at a later time. If the requests are buffered at the
directory, the network traffic is lower. However, if the buffer overflows, the requests still
have to be bounced back. Requiring transactions to be serialized through the centralized
directory (and the locking of lines while servicing a request that requires a coherency­
related transaction) could make the directory a bottleneck.

To reduce the amount of storage required, a number of modifications to the above
scheme may be made [1]. However, these modifications either require the implementation
of an efficient broadcast mechanism contradicting our assumption about scalable systems,
or may generate excess network traffic along with performance penalties. For example,
one simple modification is to have i pointers per line in the directory. Each pointer may
point to a cache that has a copy of the line. If more than i caches have copies of the
line, a broadcast has to be done to ail caches to service a write miss. The memory line
has to be locked until all caches acknowledge the invalidation. Another alternative is to
allow at most i caches to have copies of a line at the same time. In the case where a read

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

(a) (b) (0)

UlM ~~"M.
~.

~AM~1.OM
~ U,

.... Hg .. : Lina: ,.

Figure 2: Linking of caches due to read misses

miss occurs when i caches have copies of the line, the directory has to invalidate one of
the copies before the data can be supplied to the requesting cache. This might result in
"thrashing" the line between caches.

The amount of memory required for the directory may also be reduced by caching
the directory [7]. This technique may be used to further reduce the amount of memory
required for the distributed directory protocol as weiL In this paper we compare the
distributed directory proto col with the fully mapped centralized directory proto col which
has better performance than any of the centralized directory proto cols that try to minimize
the amount of memory required for the directory.

3 The Distributed Directory Protocol

In our distributed directory protocol, caches that share data are linked together in a list.
Each line in the main memory and the cache has a cache-pointer field associated with it.
This pointer can specify any cache in the system. The directory services a read or write
miss request by changing the cache-pointer in the direct ory entry associated with the line
to point to the requesting cache. A line in main memory is originally in state "absent"
from ail caches. Each request causes the value of the cache-pointer to be updated to point
to the requesting cache. If the line is absent from ail the caches, the main memory sends
a reply. Otherwise the request is forwarded to the last cache to make a request for the
same line.

In case of read misses, that cache replies to the requesting cache. The reply consists of
the data and the address of the replying cache. The requesting cache sets its cache-pointer
to point to the replying cache. A singly-linked list of caches that contain shared copies
of the data is thus formed. Read misses require a maximum of three network operations
regardless of the length of the linked list.

A line in cache memory is originally in state "invalid". A read or a write request from
the processor causes the state to change to "writing-or-reading" and a read-miss or write­
miss signal to be sent to the appropriate main memory module. On a read-miss-reply, the
value of the cache-pointer is set to be the address of the object sending the reply. This
causes a linked li st of caches that contain the data in shared state to be formed. Figure 2
illustrates the process followed to set up the linked list. Consider the case where cache Cl
has a read miss for a line followed by caches C2 and C3. As show in fig. 2(a), cache Cl
sends a read-miss signal to the directory. The cache-pointer of the line in the directory

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

-_: ~

Llnkl: ..

Figure 3: Invalidations due to write misses

is made to point to Cl. Since no other cache has a copy of the line, the main memory
sends a read-miss-reply to Cl. When Cl reeeives the reply, the line is loaded into the
cache in state "exclusive". Now, when cache C2 sends a read-miss to the directory, a
read-miss-forward signal is sent to Cl as shown in fig. 2(b). The directory does not send
a reply directly to C2 sinee Cl may have written to the line locally. The cache-pointer
in the direct ory now points to C2. When Cl reeeives the forwarded signal, it changes its
state to "shared" and sends a read-miss-reply to C2. The reply includes the data and the
address of Cl. When C2 receives the reply, it sets its cache-pointer to point to Cl. Thus
a linked list is formed. Fig. 2(c) shows how C3 gets linked into the list.

Write misses cause a write-miss signal to be sent to the directory. A Hne is allocated
in the cache before the miss signal is sent. This line is used to buffer the write. Write
buffering along with weak ordering [6] allows the processor to proceed immediately without
stalling. A write is considered to be issued when a write-miss is sent by the cache. A
write is considered to be performed when a write-miss-reply is received by the cache. A
write-miss-reply may consist of two signais as in the example below. A fence [3] operation
may be used to ensure that ail writes that have been issued by a proeessor are performed
before that processor is allowed to proceed. If a copy of the line is not present in any
other cache, the main memory directly sends a reply. Otherwise, the copies of the line
have to be invalidated before a reply can be sent.

Figure 3 shows the sequence of events that result when multiple caches have a copy
of the line and C4 has a cache miss. The directory forwards the write miss signal to
the old head (C3) pointed to by the cache-pointer and the cache-pointer is updated to
point to C4. When C3 reeeives the write-miss-forward signal, it invalidates its copy and
forwards the signal to C2. C3 also sends a write-miss-reply-data signal along with the
req~sted data to the requesting cache C4. When C2 reeeives the write-miss-forward
signal, it invalidates its copy and forwards the signal to Cl. Since the cache-pointer of
Cl points to the direct ory, it can be determined locally that Cl is the tail of the list
and a write-miss-reply-performed signal is sent to C4 after the data in Cl is invalidated.
C4 needs to receive both the write-miss-reply-data and the write-miss-reply-performed
signais before the write can be considered to be performed.

In the distributed directory protocol, the information about which caches have copies
of the data is distributed among the cache lines. The servicing of requests does not require
any locking of lines as in the case of the centralized directory protocol. Direct cache-to­
cache operations are used to send the replies and none of the replies have to be serialized
through the main memory. The eentralized bottleneck which is present in the centralized
directory protocols is thus eliminated.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

A cache line would be in state "writing-or-reading" after a read-miss or a write-miss
has been generated and before a read-miss-reply or a write-miss-reply has been received.
If the line in the cache is in state "writing-or-reading" and a read-miss-forward or a write­
miss-forward signal is received, the forwarded signal is stored in the cache-pointer field of
the cache line. The state is changed to note that a forwarded signal has been stored. Such
signais that are stored are called pen ding signaIs and are serviced when the reply to the
local read or write miss is received. If multiple transactions for the same line are pending,
the caches form a distributed queue of pending signals. The requests are thus serviced
in a pipelined manner rather than causing any bouncing of signais or contention at the
directory as in the case of the centralized directory protocol. A more detailed description
of the protocol may be found in [l1J.

The amount of memory required for the pointer is log N where N is the number of
caches. The total amount of memory needed is thus O(M log N + N c log N) where M is
the total size of main memory, N is the number of caches and c is the size of each cache.
The above expression can be written as O(M(1 + k)logN) where k is NcJNm (m being
the amount of memory per node). We interpret k as the ratio of the size of cache memory
per node to the size of main memory per node.

Assuming a constant value of k for the machine, the amount of memory required for
the distributed directory scheme is O(Mlog N). We can expect then that, using the same
technology, the cost of implementing the distributed directory scheme is significantly less
than the fully mapped scheme-which requires O(M N) amount of memory.

4 Performance Evaluation

We used two benchmarks to compare the performance of the fully mapped centralized
directory protocol and the distributed directory protocol. The benchmarks consisted of
an explicit partial differential equation solver (explicit PDE)2 and a gaussian elimination
program (gauss). These algorithms were chosen since they are widely used in scientific
and engineering communities in applications requiring high performance computation.

Weak ordering was used in ail the applications. For example, in the PDE algorithm
used, for each element in the data array, two writes may be buffered at each time step
before a fence [3J operation is required.

The simulation models were built upon an event driven simulation environment. The
simulator uses traces that are generated "on the fly", in response to actual conditions
at each instant in the simulated system, in order to preserve proper temporal ordering
between the processors [12J.

A mesh topology with 32-bit bidirectional channels was used for the comparisons.
The caches were assumed to be 128 KB 2-way associative with a line size of 64 bytes.
The SRAM cache to DRAM main memory access ratio was assumed to be 1:10. The
directories for both the protocols was assumed to he implemented in SRAM whose cycle
time was ta~en to be 1 cycle.

2The explieit solver used has data aceess patterns siuùlar to those found in SOR and polynouùally
preeonditioned eonjugate gradient methods and 80, white simple, is likely representative of a wider claos.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

CD
E
1"
c:

.Q
:;

2

al 1

.n
Q)

.~
1;j
Qi
Il:

• DO Adap (Bue)
• DO Statlc (Rel)
CI CD (Relative,

18 36 64
Number of Processors

121

Figure 4: Explicit PDE with 1 network
hop = 1 cycle

7

o

• DO Adap (B ...)
PI DO Sta1lc (Rel)
Il CD (Relative)

115 31 54

Number of Processors
121

Figure 5: Explicit PDE with 1 network
hop = 10 cycles

For one set of measurements, data was assumed to be transferred to a neighboring
node (1 hop) in 1 cycle. This assumption would be true for systems using aggressive
packaging techniques for the interconnection network. For another set of measurements,
a slower network was assumed and data was assumed to be transferred to a neighboring
node in 10 cycles.

Figures 4, 5, 6 and 7 compare the performance of the fully mapped centralized proto col
and the distributed direct ory protocol (with and without adaptive routing) for the various
cases. The execution time for the distributed directory protocol with adaptive routing
was used as the base. The y-axis shows the relative execution time for the distributed
directory proto col without adaptive routing and the centralized directory protocol as
compared with the base. The x-axis shows the number of processors. The size of the
input data set was kept constant.

For the explicit PDE solver the data was uniformly distributed among the nodes
and the processes were randomly scheduled so as not to favor the distributed directory
proto col. Figure 4 shows the relative execution time for a fast network which which
requires one cycle for one hop. Figure 5 shows the relative execution time for a slow
network which requires ten cycles for one hop. In the centralized direct ory protocol,
the invalidations on a write can be done in parallel instead of sequentially as in the
case of the distributed directory protocol. This can potentially cause the performance of
the centralized directory proto col to be better if the number of caches that have to be
invalidated is large, write buffering is ineffective, and the network is slow. However, for
the explicit PDE benchmark, most of the communication is between two logical neighbors
and the number of caches that have to be invalidated on a write is zero or one.

Figures 8 and 9 show a histogram for the number of readers between two successive
writers for explicit PDE running on 64 and 121 processors respectively. The y-axis shows
the percentage of times there were x number of readers between two successive writers,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

..
E

1= 2
c:

.Q
'5
~
.ri
g! 1

~
Qi
a:

,. .. 54

Numbar of Procassors

Figure 6: Gauss with 1 network hop =
1 cycle

where x is the value shown on the x-axis.

8

..
E
1=
c:

.Q
'5
~
)(1

LJ.J ..
>

"ia
Qi
a:

• DDAdllp(S .. ,
• DD .de (AM)
&1 CD (Ret.lve)

,. ..
Numbar of Procassors

54

Figure 7: Gauss with 1 network hop =
10 cycles

These measurements were done using the centralized directory proto col. For x equal
0, the data was either obtained from the main memory directly, or it was present in the
requesting cache but the processor did not have permission to write to the data, in which
case permission had to be obtained from the main memory by sending a modify-request
signal and receiving a modify-granted signal before the write could be considered to be
performed. For x equal l, the data was present in one other cache, in which case that
cache had to be invalidated and the data obtained from that cache in case it was dirty,
before the requesting cache could be given permission to write to the line. For x equal 2
or more, the data was present in two or more caches which had to be invalidated.

As shown in figures 8 and 9, the data was present in at most one other cache most
of the time for explicit PDE. In the distributed directory protocol, most of the requests
require three or less network operations. On a write, if the requesting cache is the only
cache that has a copy of the data, it also has permission to write to the line. Permission to
write does not have to be obtained from the main memory in this case as in the centralized
directory proto col. If one other cache has a copy of the data, the miss request is forwarded
by the main memory to that cache which invalida tes its copy and sends a reply directly
to the requesting cache instead of sending it through the main memory (as in the case
of the centralized directory proto col described in section 2). In the centralized directory
proto col most of the requests require 4 or less network operations.

Figure 5 shows that the relative execution time of the centralized directory proto col
became worse when the network was slowed down by a factor of ten. There was not
enough opportunity for the centralized direct ory protocol to take advantage of the parallel
invalidations sinee the data was not shared by many caches at the same time. A slower
network results in more contention for the eentralized direct ory proto col.

The advantage due to adaptive routing increases as the network becomes slower. This

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

is shown in figures 4 and 5 by the difference in the relative execution time for the dis­
tributed directory protocol with and without adaptive routing. Techniques for adaptive
routing [5] that are better than the one used for the simulations would further improve
the performance of the distributed directory proto col.

Figures 6 and 7 show the relative execution times for gauss. Again, the distributed
directory protocol performed better than the centralized directory protocol. For the gauss
benchmark, figures 10 and 11 show the number of readers between writes for 36 and 64
processors respectively. The synchronization was done using an algorithm similar to a
software barrier [9]. The degree of the tree structure used for the synchronization was
2. This accounts for the higher proportion of 2 readers between writes. For the ga.uss
benchmark also, the length of the list of caches that had to be invalidated on a write was
never large.

For the applications we have analyzed, the length of the list of cache~ that has to
be invalidated on a write is small. This length depends more on the application than
on the size of the system. This characteristic is also common to a range of applications
studied in [13]. Thus, it seems that the distributed directory proto col would have good
performance for a wide range of applications.

The distributed directory protocol has better performance since most of the requests
can be serviced in three or less network operations verses four or less network operations in
the case of the centralized directory protocol; the resource utilization is more distributed
and there is no centralized bottleneck; and adaptive routing can be used to improve the
performance in the case of congested networks. The direct cache to cache transfers used
in the distributed directory proto col allows the performance to be more robust for more
cost effective choices in main memory technology [10].

5 Conclusions

We have shown that the distributed directory protocol has good performance. The im­
plementation of the distributed directory proto col is more scalable to larger systems than
the centralized directory protocol. Simulation results have show that the distributed
directory protocol has better performance than the centralized directory protocol. The
protocol provides an efficient implementation of locks at minimal cost [11]. The scalability
of the distributed directory protocol in terms of both cost and performance, makes it an
attractive solution for the cache coherence problem in large scale systems.

References

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An evaluation
of directory schemes for cache coherence. In Proceedings of the 15th International
Symposium on Computer Architecture, pages 281-289, 1988.

[2] James Archibald and Jean-Loup Baer. Cache coherence protocols: Evaluation us­
ing a multiprocessor simulation model. A CM Transactions on Computer Systems,
4(4):274-298, November 1986.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

