
A. Voronkov (Ed.)

Logic Programming
First Russian Conference on Logic Programming
Irkutsk, Russia, September 14-18, 1990
Second Russian Conference on Logic Programming
St. Petersburg, Russia, September 11-16, 1991
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong 8arcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editor

J6rg Siekmann
University of Saarland
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, W-6600 Saarbrücken Il, FRG

Volume Editor

Andrei Voronkov
European Computer-Industry Research Centre (ECRC)
ArabellastraBe 17, W-8000 München 81, FRG
and
International Laboratory of Intelligent Systems (SINTEL)
Universitetski Prospect 4, 630090 Novosibirsk 90, Russia

CR Subject Classification (1991): FA. 1 , 1.2.3

ISBN 3-540-55460-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55460-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whether the whole or part of
the material is concemed, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesettîng: Camera ready by author
Printing and binding: Druckhaus Beltz, HemsbachfBergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

The Russian Conferences on Logic Programming were organised with the
aim of bringing together researchers from the Russian and the international
logic programming communities. The first conference was planned to be held
on the shore of Lake Baikal. However due to sorne local problems it was held
September 14-18, 1990, in lrkutsk - a pleasant city in the Eastern part of
Siberia. The number of participants was 71 from the Soviet Union and 11
from the other countries. The second conference was held September 11-16,
1991, on the board the ship "Michail Lomonosov", named after the founder
of the Russian Academy of Sciences. The ship started from St. Petersburg
and sailed along the River Neva, Lake Ladoga and Lake Onega. This time
there were 125 participants from the former Soviet Union and 32 from other
countries.

This volume con tains the selected papers presented to these two Russian
Conferences on Logic Programming.

The idea to organise the conference on the ship proved very successful.
The next conference will be held on the same ship July 15-20, 1992 in the
famous period of white nights. For several reasons it has been decided to
change the name of the conference to LP AR - Logic Programming and
Automated Reasoning.

1 wish to thank all the people who did a lot to organise these conferences in
the time when Russia was in total disorder. Special thanks are due to Victor
Durasov and Nelya Dulatova, who made it possible to rearrange the first con­
ference in one day. Further thanks are due to Tania Rybina, Yuri Shcheglyuk,
Yulya Mantsivoda, Lena Deriglazova, Maxim Bushuev, Vladimir Bechbudov,
Lena Shemyakina and Andrei Mantsivoda for the first conference. For the
second conference special thanks are due to Eugene Dantsin, Robert Freidson,
Per Bilse and Valeri Shatrov. Further thanks are due to Robert Kowalski,
Cheryl Anderson, Herve Gallaire, Tania Rybina, Oleg Gussikhin, Nikolai
Ilinski, Arkadi Tompakov, George Selvais, Yuri Shestov, Michael Simuni,
Vladislav Valkovski, Oleg Alekseev and Edward Yanchevsky.

Munich, March 1992 Andrei Voronkov

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Conference Sponsors

RCLP'90

International Laboratory of Intelligent Systems (SINTEL)

RCLP'91

Association for Logic Programming

SRIOpyt

Per Gregers Bilse

Prolog Development Center AIS

Applied Logic Systems Inc.

Logic Programming Associates Ltd.

SICS Sweden

St. Peterburg Institute of Electrical Engineering

Conference Organizers:

RCLP'90:

International Laboratory of Intelligent Systems (SINTEL)

Irkutsk State University

RCLP'91

Russian Association for Logic Programming

Association for Logic Programming

Eurobalt Inc.

International Laboratory of Intelligent Systems (SINTEL)

St. Peterburg Institute of Electrical Engineering

IRIInc.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Real-Time Memory Management for Prolog ... 1
Yves Bekkers, Lucien Ungaro

A Process Semantics of Logic Programs ... 13
M.Belmesk

Logical Operational Semantics of Parlog: Part II: Or-Parallelism 27
Egon Borger, Elvinia Riccobene

WAM Algebras - A Mathematical Study of Implementation: Part II 35
Egon Borger, Dean Rosenzweig

Abductive Systems for Non-monotonic Reasoning 55
A.G.Bondarenko

Properties of Algorithmic Operators ... 66
Vladimir B.Borshchev

Deep Logic Program Transformation Using Abstract Interpretation 79
Dmitri Yu.Boulanger

Objects in a Logic Programming Framevvork 102
Antonio Brogi, Evelina Lamma, Paola Mello

Integrity Verification in Knovvledge Bases .. ll4
François Bry, Rainer Manthey, Bern Martens (invited lecture)

On Procedural Semantics of Metalevel Negation 140
Stefania Costantini, Gaetano Lanzarone

Probabilistic Logic Programs and Their Semantics 152
Eugene Dantsin

Implementation of Prolog as Binary Definite Programs 165
Barl Demoen, André Marié'n

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Prolog Semantics for Measuring Space Consumption 177
A.Ja.Dikowski

Or-Parallel Prolog with Heuristic Task Distribution 193
Wai-[(eong Foong

A WAM Compilation Scheme .. 201
Hans-Günther Hein, Manfred Meyer

Safe Positive Induction in the Programming Logic TK 215
Martin C.Henson

WAM Specification for Parallel Execution on SIMD computer 232
S.Ivanets, N.llinsky, M.[(rylov

On Abstracting the Procedural Behaviour of Logic Programs 240
G.Janssens, M.Bruynooghe (invited lecture)

Treating Enhanced Entity Relationship Models in a Declarative Style 263
Norbert [(ehrer, Gustaf Neumann

Processing of Ground Regular Terms in Prolog 271
Evgeny L.Kitaev

CompiIing Flang ... 286
A ndrei Mantsivoda, Vyacheslav Petukhin

FIDO: Finite Domain Consisteney Techniques in Logic Programming 294
Manfred Meyer, Hans-Günther Hein, Jijrg Müller

A Constructive Logic Approach to Database Theory 302
Pierangelo Miglioli, Ugo Moscato, Mario Ornaghi

A bstract Syntax and Logic Programming .. 322
Dale Miller (invited lecture)

Deduction Search with GeneraIized Terms .. 338
Vladimir S.Neiman

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

A Simple Transformation from Prolog-Written Metalevel
Interpreters into Compilers and its Implementation 349
Gustaf Neumann

Free Deduction: An Analysis of "Computations" in Classical Logic 361
Michel Parigot

Gentzen-type Calculi for Modal Logic S4 with Barcan Formula 381
Aida Pliuskeviéiené

Logical Foundation for Logic Programming Based on
First Order Linear Temporal Logic ... 391
Regimantas Pliuskevicius

Logic Programming with Pseudo-Resolution 407
David M.Powers

BRAVE: An OR-Parallel Dialect of Prolog and its
Application to Artificial Intelligence .. 415
T.J.Reynolds, P.K efals

A Declarative Debugging Environment for DATALOG 433
Francesco Russo, Mirko Sancassani

A Sequent Calculus for a First Order Linear
Temporal Logic with Explicit Time ... 442
Juraté Sakalauskaité

A Logical-Based Language for Feature
Specification and Transmission Control ... 452
P.Sébillot

Program Transformations and WAM-Support for the
Compilation of Definite Metaprograms ... 462
Paul Tarau

Sorne Considerations on the Logic PFD - A Logic
Combining Modality and Probability ... 474
Wiebe van der Hoek

Logic Programming with Bounded Quantifiers 486
Andrei Voronkov (invited lecture)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Real-time memory management for Prolog

Yves Bekkers. Lucien Ungaro

INRIA 1 IRISA
Av. du Général Leclerc
35042 Rennes-Cedex

France

Tel: (33) 99 84 7100
E-mail: bekkers@irisa.fr.ungaro@irisa.fr

Abstract

This paper relates a long experiment on implementing real time garbage collectors for Prolog.
First, the main peculiarities of Prolog memory management are briefly reviewed. The relation
between non-determinism and garbage collection are explained. EarlY-Teset and variable
shunting are presented. Attributed variables, a new type of data for implementing Prolog
extensions and realizing a value trail mechanism is introduced. Then, a realtime garbage
collection algorithm, taking these aspects into account, is entirely presented. The synchronizing
problems, including those linked to non-detenninism, are discussed in details. Finally, two
concrete Implementations are described.

Key words : Prolog, garbage collector, realtime, Implementation, abstract machine, early reset, variable
shunting, attributed variable, virtual backtracking

1 Peculiarity of Prolog memory management

The efficiency of Prolog systems is due to the trailing mechanism which allows the representation of
choice points without copying them. For implementing a complete garbage collection, it is necessary to
find which objects belong to a choice point representation. Such a GC must interpret the trailing
infonnation {Bekkers84a], [Bekkers84b].

1.1 Early reset of variable and variable shunting

The main idea is to watch variables and interpret their correct binding through the different choice
points. The following cases can be distinguished :

Keeping ail information· If a variable is accessible in its bound and unbound state, the variable
and its binding must be kept.

Early reset of variables· If a variable is only accessible in its unbound state then its binding is
useless. In this case the variable should be unbound in order to loose access to his binding
[Appleby88], [Schirnpf90J, [Bruynooghe84], [Pittornvils85], [Barklund87a],

Variable shunting • If a variable is only accessible in its bound state then only ilS binding is
useful and the variable itself is useless. In this case one should replace any occurrence of the variable
by its binding value, [Huitouze90].

In §4.2.4.1, a detailled implementation of these mechanisms is given.

1.2 Attributed variables

For implementing extensions to Prolog, we have designed a new type of variable called attributed
variable [Huitouze88J, [Huitouze90], [Brisset91]. It is like a variable with an extra tenu attached to it, its
attribute. The main property of this object is that the attribute is only accessible when the variable is
unbound. Attributed variables take all their flavor with variable shunting. The space occupied by useless
attributes i5 automatically reclaimed by variable shunting.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

Attributed variables are used in implementing PROLOGII freeze and dif primitives; it can a1so be
used to implement other kind of constraints or value trail mechanisms 5uch as described in [Carlsson871.
[Turk861. [Barklund87bl. [Toura881. [NeumerkeI90].

1.3 The abstract machine MALI

MALI is an abstract machine which has been designed to encapsulate the memory management of
Prolog systems [Bekkers861, [Bekkers88]. It offers a set of commands for creating, accessing, modifying
Prolog abjects 5uch as constructed tenns, logical variables •... the backtrack stack itself is managed by
MALI. In top of that, MALI offers an automatic memory management.

Many different implementations of MALI have been experimented. sorne with a seriaI GC, sorne with
a realtime Ge, sorne entirely in software (in C), sorne microprogrammed on a specialized hardware 10 be
inserted into PCs. The same Prolog system, written in C, compatible with PrologII [Colmerauer821, uses
any of these irnplementations.

2 The state of a Prolog system

As usuaI, the state a Prolog system is summarized into three infonnations, the current goal statement,
the backtrack stack and the trail. With :rv1ALI, the dynamic space is organized as a single heap managed by
the garbage collector. This must be opposed to the W AM architecture where the dynamic space is split into
several spaces, stacks and heap, each subject to its own specifie management.

2.1 A tagged pointer scheme

Our ruotime system uses a tagged pointer scheme with an elementary type of value called a WORD. A NORD
contains an infonnation field and a tag field. The tag specifies the type of the represented value which may
be atom, list, tuple, variable, trail, leve1, etc

typedef struct {
TAG tag ;
INFO info ;

WORD ;

From the point of view of the Garbage collector there are two types of tags, those indicating a pointer,
and the others indicating small atomic values. In the two implementations of MALI that we are presenting
here, the size of a referenced abject, including tuples, is given by tags (see description of tuples later).

2.2 Representing Prolog terms

Each Prolog term, such as atom, cons, tuple, variable, is designated by a WORD.

atom : the tag is T _a tom, the infonnation is a bit-coding of the value of the atomic constant.

,T atom, value

cons: the tag is T _cons, the infonnation is a pointer ta a CONS structure.

t YPf'def st rllct {
NORD left i
WORD right ;

CONS ; ; ,.-----------,'

}. _.....L ___ -II kft
'-_...L.. ___ --'. nght

tuple: the tag is T_tuple (i), the information is a pointer to an array of i words, one WORD per
component.

variable: the tag is T var, the infonnation is a pointer to a VAR structure. The binding field
holds the variable binding and a special tag T _ free means that the variable is unbound. The age field is a

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

reference ta the choice point which was at the top of backtrack stack when the variable was created. The tag
of an age is Tage.

The age field is used by the garbage collectar for implementing the variable shunting mechanism.

typedef strllct
WORD binding
WORD age
VAR ;

,T var

1 binding
_ age

attributed variable: the tag is T vara, the information is a pointer to a VARA structure. This
structure cantains a supplementary field, the attribute, which is a tenn.

t ypedef st TU ct {
WORD binding ;
WORD age ;
WORD attribute

VARA ;

,T vara ,

2.3 Representing the active goal statements

_I:ding

. attnbute

The active goal statements are thase in the choice point stack plus the cUITent one.

Current goal statement : it is a list of goals held in a register G. Each goal is a term as previously
described.

Backtrack staek : it is represented as a linked list of choice points. Each choice point is a structure
called a LEVEL containing four fields :

typedef struct {
NORD goal ;
WORD clause ;
WORD trail ;
WORD next

LEVEL ;

1* the goal statement (a list of goals) *1
1* the clause (pointer to program, not relevant to the Ge) "'1
1* the trail (a list of bindings) *1
1'" the link ta the next choice point *1

The top of that stack, is held in a register S.

The trail : each choice point contains a list ofreferences to bound variables. Il records such bindings
that have to be undone on backtracking ta recover the next choice point. In MALI it is a linked list of trail
elements:

typedef st ruct {
WORD var ;
WORD next

TRAIL ;

The CUITent list of bindings is held in a register T.

Notice that the [Ifst element of the CUITent trail is an empty element, the grey element in figure 1. It can
be seen as a trail element created in advance. This element makes algorithm for updating the trail, figure 8,
more uniforrn by putting the content of register Tinto memory location. [Barklund87aJ and [Schimpf90]
have met the same problem, their solution was to create a dummy choice point.

Registers G, Sand T contain WORDs which give access to the useful data, these are the roots for the
marking algorithm.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

•• •

al4

ail

oal2

4

T_cons

T_ato

T_trail

T_lcvel

T_cons

T_atu

T_trail

T_level

T

goal

clause

trail
ncxt

T_refv ---.. goal
T_Irail

clause --- trail T_refv

ncxt T_trail

figure 1 : Goal statements, choice points and trail

3 Choosing the garbage collcctor

We took two constraints for the design of our garbage collector. First, it must work in real~time. Second, it
must be weIl suited for Prolog, that is it must implement variable shunting and early reset of variables.

3.1 An algorithm for real·time garbage collectors

We have experimented two implementations of real time Ge which are discussed later in §5. For both
implementations, we have chosen Cheney's [Cheney70] copying algorithm as it has been recognized
[Baker78], [Liebennan83] as being very weIl suited for real-time garbage collection.

Recall that Cheney's algorithm copies useful cells From afromspace to a tospace, figure 2. lt uses two
indexes, a visit index M which points to the queue of copied objects not yet visited and a copy index C
which points to the beginning of the free area where objects are copied.

fromspace tospace
allocation copy

area area

figure 2: Visit and copy indexes for Cheney's algorithm

New objects are allocated in the allocation area in which index A gives the last allocated ward.
Allocation and copy areas grow in opposite directions. We have decided that C and M decrease tawards
lower addresses.

The size of the allocation area is bound by the size, e, of the previous empty area. Prolog system is
suspended when reaching this boundary, until the current GC batch is finished. This is necessary to avoid
deadlock on memory resource between Prolog system and its GC. At the end of a collecting batch, the
allocation boundary is opened up to the C index until the next batch is started. A suspension of Prolog
system corresponds ta an abnonnal functioning, in which the collector doesn't satisfy, in rea! time, Prolog
system needs.

In the allocation area, objects are stacked as they are created. Bence, on backtracking this area may be
instantly reclaimed. The instant reclairning in the allocation area has proved ta be sufficient for real-time
GC, see discussion in §6.2.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

3.2 Stratification of Prolog garbage collectors

Goal statements, the current one and those in the backtrack stack, can be marked independently. Doing so,
the correct bindings is interpreted [Bekkers84al. This allows the implementation of complete GCs which
petfonns early reset of variables and variable shunting.

The garbage collection stans with the current goal statement, then it continues with active goal
statements down through the stack, from the newest one to the oldest. Doing 50, early reset and shunting
of variables can be implemented very efficiently, requiring a time proportionnaI to the amount of usefuU
objects.

4 Stratified Cheney's algorithm

Notation: in the following we use the notation (F-L) to refer line L of the program in figure F.

Two processes are involved, the mutator (Prolog) and the collector. At the beginning the collector is
waiting for a signal (4~2) given by the mutator. A panicular command, Reduce, figure 3, possibly stans
the collector.

4.1 Starting the garbage collector

Between each resolution step, the state of Prolog is summarized within the three registers G, Sand T ;
Prolog executes the command Reduce to signal the collector that a batch can be started (3-7) with the three
mentioned registers as roots (3-4). The command Reduce has no effect when the collector is working or
when it is not enabled (3-2).

LEVEL * SM ; WORD * TM

1 Command Reduce() {
2 if (waiting(StartGC) && CollectorEnabled(» {
3 "exchange from/to spaces" ;
4 G=NewVersion(G); S=NewVersioo(S); T=Copy(T);
5 SM = S.iofo ;
6 TM = &{((TRAIL*) T.info)->next) ;
7 sigoal{StartGC)
B
9

fi re 3 : The command Reduce

The collector is only enabled if a certain percentage of the memory is used, this is to avoid slowing
down the mutator, see §6.1.

Memory overflow detection

One of the problems with realtime garbage collectors is to decide when memory overt1ow has occurred. If
there is not enough memory the mutator must be suspended until the current collector batch is fini shed.
Then if there is not yet enough memory. a new collector batch must be completed. If there is still not
enough memory then the system is running out of memory.

It is impossible to stan a collector batch at any rime because roots of access are oot always summarized
in the iotended registers. We have solved this synchronization problem with the Reduce command which
defines the correct instants for staning the Ge. Prolog is suspended inside this command if there is no!
enough memory to continue. With this solution, one has to decide of a maximum amount of memory which
can be allocated between two executions of the command Reduce. Prelog is suspended if the free memory
is smaller than trus amount. For Prolog, this amount can be bounded by the size of the largest clause.

4.2 The garbage collector

4.2.1 The main loop of the collector

For each choice point, the collector copies its goal statement using Cheney's algorithm (4-4). Then,
the trail is updated before going on with the next choice point. This is done by the procedure
UnTrailOneElt (4-5).

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

6

For synchronizing reasons explained in §4.2.4, only one element of the trail is processed al a time ; the
procedure is alsa in charge to prime the copy of the next level when the end of a segment trail is reached
and to signal the end of the backtrack stack.

1 while (true) {
2 ~(StartGC)
3 ~ (true) {
4 CopyLeve l ()
5 il (UnTrailOneElt () != EndOfLevels) ~
6
7

figure 4 : main loop of the collector

4.2.2 Copying a goal statement

Copying a level, figure 5. consists in a simple Iocp to update the references within the segment of memory
situated between indexes C and M. The loap ends when C::::M. Of course, this process might involve
copying new information in the capy area, this is done by the procedure NewVersion, figure 6.

Notice that not aIl words are visited (5-4). The procedure AllowedVisit, not detaiIed here,
successes only if M does not point to the attribute of a bound variable or to the goal statement of a LEVEL.
According to the stratification principle :

• the attribute of a bound variable is copied while updating its trail element (9-9), see §4.2.4.2,
• the goal statement of a level is copied when the collector primes the copying of this level (8-6).

1 CopyLevel()
2 ~ (M != C)
3 M = M - 1
4

5
6
7

if (AllowedVisit)
exclusion (CopyObj) *M NewVersion (*M)

fi ure 5 : co . n an entire oal statement

4.2.3 Getting the new version of an object

The NewVersion procedure, figure 6, gives the reference to a new version of an object, either by
copying the object (6-16), or by using its forward reference (6-12).

This procedure is aIso in charge of shunting variables (6-14) when they have been marked "shunted"
(9-12).

1 WORD NewVersion(W)
2 WORD W ;
3 {
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

swit ch W. tag {
~ T_atom, T free,

T trail, T refvar, T refvara :
return (W) ;-

~ T cons, T var, T vara, T_level, T_age
~- (InToSpace{w.info)

return(W)
eJsejf (Forwarded(W))

retJlro ((W. iofa) ->iofo)
elsejf (IsShuntedVar{W))

retllro (NewVersion ({ (VAR*) W. info) ->binding))
<:.l.s..e.

return (Copy (W))
)

fi ure 6: . ve the new version of an ob· ect

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

7

Critical section for copying objects : the mutator and the collector are bath involved in copying
abjects. Renee, the presence of the critical section CopyObj, (5-5), (8-5) for the collectar and (11-3),
(12-15) for the mutator. The exclusion also includes the update of the WORD pointed to by index M.

1
2
3
4
5
6
7
8
9
10

WORD Copy(W)
WORD W ;
{ int Size

il (w. info
C = C-Size

SizeOfObject(W.tag)
== nil) retqrn (W)

CopyBlock(Size, W.info, Cl
* (w. into) . tag=T forward; * (w. into)
W. info = C -
retJJrn (W)

.info=C

fi ure 7 : Co and forward an ob' eet

4.2.4 Updating the trail

Once a goal statement has been copied, the trail segment it holds is copied and updated. Early reset is
applied and shunted variables are marked shunted. The procedure tackles ooly one element at a time, the
iteration for a trail section is done by the Ioap of the collector (4-3).

1 EOL UnTrailOneElt (» {
2 exclusion (Trail) {
3 li (SM = nil) return EndOfLevels
4 il (TM->info - nil) {
5 exclusion (copyObj)
6 SM->goal = NewVersion(SM->goal)
7 SM (SM->next) .info ;
8 TM = (SM->trail) .info
9
10 ~ UpdateTrailElt ()
Il retprn NotEndOfLevels
12
13

fi ure 8 : visitin a trail section

Critical section for manipulating traiIing information : the trail may be pushed down by a
Backtrack command, therefore, updating a trail element may not be done in parallel with such a
commando Renee, the presence of the critical section Trail, (8-2) for the collector and (12-2) for the
mutator.

The synchronizing problem happens when the mutator backtracks ta a choice point which has not yet
been visited by the collector (12-14). In that case the collector must stop its untrailing process, hecause trail
elements are no more significant. When such a deep backtrack accurs (12-14), the backtrack stack seen by
the collector is forced te shrink (TM and SM registers are updated (12-19)) and the CopyLeve l process
is primed with the roots of the recovered level (12-16). After the Backt rack command, the next iteration
of the collector loop (4-3) will see a nonempty queue between C and M and will pursue the copying of this
level even if it was currently tackling a traîl section.

4.2.4.1 Implementation of early reset and variable shunting

When updating a trail element three cases must he considered :
(1) useful binding (the variable has already been copied) :

(1.1) usefu) free variable (the variable is older than the next choice point) :
the trail element is copied to be kept in the trail; for an attributed variable a new version of ilS
attribute is obtained, figure 10;
(1.2) useless free variable (variable is younger than the next choice point) :
the traii element is discarded and the variable is marked shunted;

(2) useless binding (the variable has not been copied):
the trail element is discarded and the variable is resetfree.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

1
2
3
4

5
6
7
8

8

UpdateTrailElt()
{ WORD RefVar ; LEVEL * AgeOfVar ;

RefVar = (TM->info)->var ;
il (Forwarded(RefVar» { /* (1) */

)

RefVar.info = (RefVar.info)->info
AgeOfVar = ({ (VAR*) RefVar.info)->age)
li (AgeOfVar != SM) { 1* (1.1) * /

}

exclllsjon (Copy) TM* = Copy(TM*)
UpdateAttribute{RefVar)

cl.s..e. { 1'(1.2)'1
SetShunted(RefVar) ;
TM* = (TM->info)->next

cl.s..e. { 1'(2)'1

.info

9
10
11
12
13
14
15
16
17
18
19
20

«VAR* RefVar.info)->binding) .tag
TM* = (TM->info)->next

free;

fi re 9 : visitin a trail e1ement

Attributes of shunted variables (9-11) does not need to be updated, fuis is because such attributes will
neveT be accessed.

4.2.4.2 Copying attributes with the correct binding environment

The attributes of bound variables are not updated in a standard way. This is to avoid copying an attribute
with an incorrect binding environment. Attributes are copied while visiring the trail (9-9).

1 UpdateAttribute(RefVar)
2 WORD RefVar ;
3 {WORD *RefAttrib ;
4 il (RefVar. tag == T refvara)
5 exeJllsjoD (CopyObj)
6 RefAttrib=&«((VARA*)RefVar.iDfo)~>attribute);
7 *RefAttrib = NewVersion(*RefAttrib)
8
9

fi ure 10 : u darin the attribute of a bound V ARA

4.3 Exarnples of cornrnands

Ta illustrate the interactions between the collector and the mutator, sorne examples of comrnands are given,
an access command (Left), the backtrack command (Backtrack) and a binding command (BindVar).

4.3.1 How the mutator is involved in copying objects

The command Left returns the 1eft component of a binary "cons" term. In case this component is a
reference ta an object srill in the fromspace, the command applies the NewVersion procedure. Therefore,
Prolog system never gets any reference into the fromspace and the allocation area will never contain any
reference to the fromspace. Of course, the NewVersion procedure may enforce the copy of an object.

1 Cornmand WORD Left(Cons)
2 WQRD Cons ;
3 { exçJl1sjoo (CopyObj)
4 retllro (NewVersion «CONS*) Cons. info) ->left»
5

fi ure Il : Accessin a cons the command Left

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

9

4.3.2 Synchronizing problems while backtracking

The command Backtrack retrieves the top of the backtrack stack. Due to concurrent use of the trail,
this command is executed under the Trail exclusion. Variables belonging to the current trail section are
reset and registers G, S and T are updated. If the collector has not yet started the copy of the recovered
choice point, (12-14) this is what we have called a deep backtrack condition, §4.2.4, the backtrack stack
seen by the collector is forced to shrink (12-19).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Command Backtrack()
exc]llSiOD (Trail)

TRAIL * TT = «(TRAIL*) T.info)->next) .infa
~ (TT != nil)

} ;

VAR * Refvar = (TT->var). infa ;
(RefVar->binding) . tag = free ;

TT ;= TT->next ;

LEVEL * Choicepoint = S.info
G = ChoicePoint->goal
Clause = ChoicePoint->clause
S = ChoicePoint-> next ;
«TRAIL*) T.info)->next = ChoicePoint->trail
li (Choicepoint == SM) {

excllJsion (CopyObj) {
G NewVersion(G)
S = NewVersion(S)

}
SM S.info;
TM &(«TRAIL*) T.info)->next)

fi ure 12: Backtrackin 0 eration the command Backtrack

4.3.3 An example of allocation: binding a variable

This command BindVar creates an empty trail element requiring two words in the allocation area. At
the beginning, there is a check (13-4) to see if there is enough space in the allocation area. The test is meant
to always succeed because the system is supposed ta be suspended inside the command Reduce if space
is insufficient (see §4.1).

1
2
3
4
5
6
7
8
9
10
11
12
13

Command BindVar(Var, Term)
WORD Var, Term ;

WORD * NewT ;
CheckAllocation(2) "
«VAR *)Var.info)->binding = Term ;
{(T.info)->var) .info = Var.info
{++A)->tag = T refvar /* creating a new
A->info = nil -; /* trail element
NewT = A ;
(++A)->tag = T trail
A->info = T.info ;
T.info = NewT.info ;

empty * /
*/

figure 13: Binding a variable the command BindVar

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

10

5 Implementations of Realtime garbage collectors

We have implemented two kinds of realtime garbage collectors, a pseudo-parallel and a parallel one.

5.1 pseudo-parallel garbage collectors

The pseudo-parallel GC emulates two processes on a single processor. The first process is the Prolog
system and the second is MALI garbage collectar. The code for bath processes is written in C. A
corroutining mechanism provides sequencing between the two processes. Garbage collection is done
incrementally : the smallest grain of work is either an iteration of the CopyLevel loop (5-2) or an
execution of procedure UnTrailOneEl t (figure 8). These steps of garbage collection may he done each
time a mutator cornmand reqUITeS memory allocation. Therefore the garbage collecting time is spread along
Prolog interpretation rime, but the two processes never work really in parallel.

In this implementation, the Copy and Trail exclusions are naturally realized by the chosen step of
garbage collection.

5.2 parallel garbage collectors

To implement our parallel GC, we have chosen a private memory architecture, figure 14 : one processor,
MALI, supports the garbage collector together with the commands and has exclusive access to Prolog
memory state. The other processor, the host, supports Prolog interpretation. The two processors
communicate via a small shared memory. Processor MALI is a specially microprogrammed processor
board to be installed in an IBM PC compatible computer.

Prolog.
state

memory

commands

-)::=~~~~n::=:J~.rocessor
Garbage collection

+
Commandsexecution

Prolog clauses
interpretatian

figure 14: a MALI processor architecture

The GC process runs as a background task. Commands sent by the hast are processed by the mutator
as interruptions.

The Copy exclusion is realized in the GC code by disabling interruptions of the micromachine.
Commands are delayed during the copy of objects, but this latency is reasonably shQrt, see §6.1. The
Trail exclusion is implemented with boolean variables plus a hardware mechanism to suspend and restart
a commando The time spent by the collector ta process a trail element is long enough to justify such a
selective mechanism for implementing the Trail exclusion.

6 Discussion and results

The parallel garbage collector has been implemented on a PC AT with a SMHz 80286 interpreting
Prolog and a 6MHz microprogrammed processor built around an AMD 2916 supponing MALI. Compared
with a software version of MALI implemented in C on the same PC having a seriaI garbage collector, this
parallel version showed a speedup factor of 2. This result is essentially due to the fact that the commands,
which roughtly represents 50% of the total execution time with the software version of MALI, are executed
on the specialized hardware which is about 10 time faster for that job.

The pseuso-parallel collector has been written in C and is portable with Prolog on any computer. The
relative speed of the collector with respect to the mutator is tuned by giving the number of collector steps
executed for each allocated word. The best execution lime which has been observed with this
implementation is 30% longer than that of the seriaI collector implementation, and it was obtained for a
speed ratio less than one step per allocated word. Generally, for programs requiring 70% or less of the
memory, a real-time behavior is obtained for a collectar speed between 1 and 2 steps per allocated word.
As expected, speed degradation increases with collector speed, because useless collecting work is done.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

11

6.1 Interferences between a parallel collector and the mutator

When the parallel collectar is running the speed of the mutator is somewhat reduced by two agents .
• The latency of execution of the commands is increased because the collector must complete the
atomic action it is currendy doing. In our implementation, this latency has been measured to be about
10% of the command execution time .
• As we have said earlier, the mutator may be forced to copy abjects. The time spent for these copies
has been measured indirectly and represents between 10% to 15% of the command execution time.

Therefore, the command execution time is around 20% slower when the collectar is running. In our
system, due ta the specialized implementation of commands. MALI commands represents only 10% ta
20% of the total execution time of Prolog. Sa the overall degradation induced by the parallel collector is
only 3% to 4% of the total system performances.

6.2 Instant reclaiming on backtracking and realtime garbage collector

In a conventional Prolog system, space is immediately recJaimed on backtracking. With our GC, this
reclaiming is not entirely applicable because the arder of objects in memory is modified by Cheney's
copying technique. On backtracking, we can only reclaim memory in the allocation area, where objects are
stilllocated in creation order.

The expected normal functioning, also called stable functioning, of such a collector is when the collector is
fast enough ta avoid suspensions of the mutator for allocation reasons. In our system, the immediate
reclaiming in the allocation area has proved ta be amply sufficient to slow down apparent consumption of
memory so that the garbage collector follows in real time the mutator needs.

7 References

Appleby88. Appleby, K., Carlsson, M., Haridi, S., and Sahlin, D. Garbage collection for
Prolog Based on the W AM. Communications of the ACM 3/, 6 (June 1988), pp. 719-741.

Baker78. Baker, H.G. List processing in real time on a seriaI computer. Communications of the ACM
21,4 (April 1978), pp. 280-294.

Barklund87a. Barklund, J. A Garbage collection Algorithm for Tricia. Tech. Rept. 37B, UPMAll.,
Uppsala University, Sweeden, December, 1987.

Barklund87b. Barklund, J. and Millroth, H. Hash Tables in Logic Programming. In Proceedings
of the International conference on Logic Programming, ICLP87, Lassez, J.L.,
Melbourne, Austria, MIT Press, May 1987, pp. 411-427.

Bekkers84a. Bekkers, Y., Canet, B., Ridoux, O., and Ungaro, L. A short note on garbage
collection in Prolog interpreters. Logic Programming News letters , 5 (1984).

Bekkers84b. Bekkers, Y., Canet, B., Ridoux, O., and Ungaro, L. A memory management
machine for Prolog Interpreters. In Proceedings of the second international Logic Programming
conference, Uppsala, Sweden, July 1984, pp. 343-353.

Bekkers86. Bekkers, Y., Canet, B., Ridoux, O., and Ungaro, L. A memory with a real-time garbage
collector for implementing logic programming languages. In Proceedings of the second
International symposium on Logic programming, IEEE, Salt-Lake City, Utah, 1986, pp. 258-265.

Bekkers88. Bekkers, Y., Canet, B., Ridoux, O., and Ungaro, L. MALI, A memory for implementing
logic programming languages. In Programming offuture generation computers, K. Fuchi, M.N.,
Tokyo, Japan, Elsevier Sciences Publishers BV North Holland, 1988, pp. 25-34.

Brisset91. Brisset, P. and Ridoux, 0. Naive reverse can be linear. In Proceedings of the international
conference on Logic programming, Paris, France, June 1991.

Bruynooghe84. Bruynooghe, M. Garbage collection in prolog interpreters. In Implementations of
Pr%g, J. Campbell, E.H., 1984, pp. 259-267.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

