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Preface

The Russian Conferences on Logic Programming were organised with the
aim of bringing together researchers from the Russian and the international
logic programming communities. The first conference was planned to be held
on the shore of Lake Baikal. However due to some local problemns it. was held

Septermber 14-18, 1990, in Irkutsk — a pleasant city in the Eastern parl of

Siberia. The number of participants was 71 from the Soviet Union and 11
7)) from the other countries. The second conference was held September 11-16,
1991, on the board the ship "Michail Lomonosov®, named after the founder
of the Russian Academy of Sciences. The ship started from St.Petersburg
and sailed along the River Neva, Lake Ladoga and Lake Onega. This time
there were 125 participants from the former Soviet Union and 32 from other
countries.

This volurne contains the selected papers presented to these two Russian
Conferences on Logic Programming.

The idea to organise the conference on the ship proved very successful.
The next conference will be held on the same ship July 15-20, 1992 in the
famous period of white nights. For several reasons it has been decided to
change the name of the conference to LPAR — Logic Programming and
Automated Reasoning.

I wish to thank all the people who did a lot to organise these conferences in
the time when Russia was in total disorder. Special thanks are due to Victor
Durasov and Nelya Dulatova, who made it possible to rearrange the first con-
ference in one day. Further thanks are due to Tania Rybina, Yuri Shcheglyuk,
Yulya Mantsivoda, Lena Deriglazova, Maxim Bushuev, Vladimir Bechbudov,
Lena Shemyakina and Andrei Mantsivoda for the first conference. For the
second conference special thanks are due to Eugene Dantsin, Robert Freidson,
Per Bilse and Valeri Shatrov. Further thanks are due to Robert Kowalski,
Cheryl Anderson, Herve Gallaire, Tania Rybina, Oleg Gussikhin, Nikolai
Ilinski, Arkadi Tompakov, George Selvais, Yuri Shestov, Michael Simuni,
Vladislav Valkovski, Oleg Alekseev and Edward Yanchevsky.

DU CERI

BIBLIOTHEQUE

Munich, March 1992 Andrei Voronkov
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Real-time memory management for Prolog

Yves Bekkers, Lucien Ungaro

INRIA /IRISA
Av. du Général Leclerc
35042 Rennes-Cedex
France

Tel: (33998471 00
E-mail : bekkers@irisa.fr, ungaro@irisafr

Abstract

This paper relates a long experiment on implementing real time garbage coliectors for Prolog.
First, the main peculiarities of Prolog memory management are briefly reviewed. The relation
between non-determinism and garbage collection are explained. Early-reset and variable
shunting are presented. Attributed variables, a new type of data for implementing Prolog
extensions and realizing a value trail mechanism is introduced. Then, a realtime garbage
collection algorithm, taking these aspects into account, is entirely presented. The synchronizing
problems, including those linked to nen-determinism, are discussed in details, Finally, two
concrete implementations are described.

Key words : Prolog, garbage collector, realtime, implementation, abstract machine, early reset, variable
shunting, attributed variable, virtual backoracking

1 Peculiarity of Prolog memery management

The efficiency of Prolog systems is due 1o the tratling mechanism whick allows the representation of
choice points without copying them. For implementing a complete garbage collection, it is necessary to
find which objects belong to a choice point representation. Such a GC must interpret the trailing
information {BekkersBda), [Bekkers84b].

1.1 Early reset of variable and variable shunting

The main idea is to watch variables and interpret their correct binding through the different choice
points. The following cases can be distinguished :

Keeping ail information - If a variable is accessible in its bound and unbound state, the variable
and its binding must be kept.

Early reset of variables - If a variable is only accessible in its unbound state then its binding is
useless. In this case the varizble should be unbound in order to loose access to his binding
[ApplebyB8], [Schimpf90], [Bruynooghe84], [Pittomvils85], | Barktund87a].

VYariable shunting - If a variable is only accessible in its bound state then only its binding is
useful and the variable itself is useless. In this case one should replace any occuarrence of the variable
by its binding value, [Huitouze90].

In §4.2.4.1, a detailled implementation of these mechanisms is given.

1.2 Attribnted variables

For implementing extensions 1o Prolog, we have designed 2 new type of vanable called attributed
variable [Huitouze88}, FHuitouze90}, [Brisse191). It is like a variable with an extra term attached 10 it, its
attribute. The main property of this object is that the attribute is only accessible when the varable is
unbound. Attributed vaniables take al} their flavor with variable shunting. The space occupied by useless
aftributes is automatically reclaimed by variable shunting.
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Attributed variables are used in implementing PROLOGI] freeze and dif primitives; it can also be
used to implement other kind of constraints or value rrail mechanisms such as described in [Carlsson871,
{Turk86], {Barklund87b}, [Toura88], [Neumerkel907.

1.3 The absiract machine MALIT

MALI is an absmract machine which has been designed to encapsulate the memory management of
Prolog sysiems [Bekkers86], {Bekkers88]. It offers a set of comrands for creating, accessing, modifying
Prolog objects such as constructed terms, logical varables, ... the backtack stack itself is managed by
MALL In top of that, MALI offers an automanc memory management.

Many different implementations of MALI have been experimented, some with a serial GC, some with
a realtime GC, some entirely in software (in C), some microproprammed on a specialized hardware {0 be

inserted into PCs. The same Prolog system, written in €, comparible with Prologil {Colmerauer82], uses
any of these implementations.

2 The state of a Prolog system

As usual, the state a Prolog system is summarized inio three informations, the current goal statement,
the backtrack stack and the trail. With MALI, the dynamic space is organized as a single heap managed by
the garbage cotlector, This must be opposed to the WAM architecture where the dynamic space is split into
several spaces, stacks and heap, each subject to its own specific management.
2.1 A tagged pointer scheme
Our runtime system uses a tagged pointer scheme with an elementary type of value called a WORD. A WCRD

contains an informaticn field and a tag field. The tag specifies the type of the represented value which may
be atom, list, tuple, variable, trail, level, etc ...

tvpedel struct |
TAS tag ;
INFO info ;
l WORD ;

From the poim of view of the Garbage collector there are two types of tags, those indicating a pointer,
and the others indicating small atomic vaiues, In the two implementations of MAL1 that we are presenting
here, the size of a referenced object, including tuples, is given by tags (see description of tuples later).

2.2 Representing Prolog terms
Each Prolog term, such as atom, cons, tuple, variable, is designated by a WORD.

atom : the tag is T_atom, the information is & bit-coding of the value of the atomic constant.

cons :the tag is T_cons, the information is a pointer 10 a CONS siructure.,

typedef struct | T_coms
WORD left ; f
WORD right
1} CONS P laft

’ t right

tuple :the tagis T _tuple (i), the information is a pointer 1o an array of { words, one WORD per
component.

vartable : the tag is T _wvar, the information is a poiater 10 a VAR structure. The binding ficld
holds the variable binding and a special tag T_£ree means that the variable is unbound. The age fieldis a
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reference o the choice point which was at the top of backirack stack when the variable was created. The tag
ofanage is T age.
The age Tield is nsed by the garhage collector for implementing the variable shunting mechanism.

Lypedef sbruct f T var
WCRD binding :
WORD age E 1 binding

i WAR
T_age | ape

attributed variable : the tagis T vara, the information is a pointer 10 a VARA structure. This
structure contains a supplementary field, the attribute, which is a term.

typedef stryct | T_vars
WORD binding ;
WCOR s ; E
CRD age ; 1 binding

WORD attribule ;
} VARA Toage) o ) o
¢ attribute

2.3 Representing the active goal statements
The active goal staternents are those in the choice point stack plus the current one.

Current goal statement : it is a list of goals held in a register G. Each goual 15 a term as previously
described.

Backtrack stack : it is represented as a linked list of choice points. Each choice point is a structare
called a LEVEL containing four fields :

{ struct |
WORD goal ; /* the goal statement (a list of goals) */
WORD clauze ; /* the clause (pointer to program, not relevant to the GO */
WCRD trail ; /* the trail (a list of bindings) */
WCRD next /* the link to the next choice point */
} LEVEL ;

The top of that stack, is held in a register S.

The trail : each choice point contains a list of references to bound variables. It records such bindings
that have to be undone on backtracking to recover the next choice point. In MALL it is a linked list of trail
clements :

typeces struct |
WORLD war ;
WORD next
} TRAIL ;

The current list of bindings is held in a register T.

Notice that the first element of the current irail 15 an empry element, the grey element in figure 1. Ircan
be seen as a trail element created tn advance. This element makes algorithm for updating the trail, figure 8,
more uniform by putting the content of register T into memory location. [Barklund87a] and [Schimp{90]
have met the same problem, their solution was to create a dummy choice point.

Registers G, 5 and T contain WORDs which give acvess to the useful data, these are the roots for the
marking algorithm.
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figure | - Goal staternents, choice points and crail
3 Choosing the garbage colleclor

We took two constraints for the design of our garbage collector. First, 1t must work in real-time. Second, it
must be well suited for Prolog, that is it must implement variable shunting and early reset of variables.

3.1 An algorithm for real-time garbage colleclors

We have experimented two implementations of real 1ime GC which are discussed later in §5. For both
implementations, we have chosen Cheney's [Cheney70] copying alperithm as it has been recognized
|Baker78], |Licberman® 3] as being very well suited for real-time garbage collection.

Recali that Cheney’s algorithm coptes useful eells from a fromspace 1o a tospace, figure 2. 11 uses two
indexes, a visir index M which points to the quene of copied objects not yer visited and a copy index
which points 10 the beginning of the free area where objects are copied.

fromspace tospace
allocation copy i
arca aAred 3
Mg i
-

queug for the breadth-fisst trave

figure 2 : Visit and copy indexes for Cheney's algorithm

New objects are allocated in the allocation area in which index A gives the last allocated word.
Allocation and copy areas grow i opposite directions. We have decided that C and M decrease towurds
lower addresses.

The size of the allocation arca is bound by the size, e, of the previous empty arca. Prolog system is
suspended when reaching this boundary, unal the current GC batch is finished. This iy necessary to avoid
deadlock on memory resource between Prolog system and its GC. At the end of a collecting batch, the
allocation boundary is opened up to the C index until the next batch is staried. A suspension of Prolog
system corresponds o an abnormal functioning, in which the collector doesn't satisfy, in real time, Prolog
systemn needs.

~ In the allocation area, objects are stucked as they are created. Hence, on backiracking this arca may be
instantly reclaimed. The instant reclaiming in the allocation area has proved to be sufficient for real-time
GC, see discussion 1 §6.2.
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3.2 Stratification of Prolog garbage collectors

Goal statements, the current one and those in the backirack stack, can be marked independently. Doing so,
the correct hindings is interpreted [Bekkers84a). This allows the implementation of complete GCs which
performs early reset of variables and variable shunting.

The garbage collection starts with the current goal statement, then it continues with active goal
staternents down through the stack, from the newest cne to the cldest. Doing so, early reset and shunting
of variables can be implemented very efficiently, requiring a time proportionnal to the ameunt of usefull
objects.

4 Stratified Cheney’s algorithm
Notation : in the following we use the notation (F-L) to refer line L of the program in figure #.

Two processes are involved, the mutator (Prolog) and the collector. At the beginning the collector is
waiting for a signal (4-2) given by the mutator. A particular command, Reduce, figure 3, possibly starts
the collector,

4.1 Starting the garbage collector

Betvween each resolution step, the state of Prolog is summarized within the three registers G, S and T ;
Prolog executes the command Reduce to signal the collector that a batch can be started (3-7) with the three
mentioned registers as roots (3-4). The command Reduce has no effect when the collector is working or
when it is not enabled (3-2),

LEVEL * 8M ; WORD * TM ;

comnand Reduce [} |
if (walzing(StartGC) && CollectorEnabled{)) |
"exchange from/teo spaces™ ;
G=NewVersion{G); S=NewVersicn(3); T=Copy{T):;
5M 5.info ;
THM = & {{{TRAIL*) T.info)-»next) ;
sigpal {(3tartGe)

WO 0o N U s ) R

figure 3 : The command Reduce

The collector is only enabled if a ceriain percentage of the memory is used, this is to avoid slowing
down the mutator, see §6.1.

Memory overflow detection

One of the problems with realtime garbage collectors is to decide when memory overflow has cecurred. If
there is not enough memory the mutator must be suspended until the current collector batch is finished.
Then if there is not yet enough memory, a new collector batch must be completed. If there is still not
enough memory then the system is running out of memory.

It is irnpossibie to start a collector batch at any time because roots of access are not always surmnmarized
in the intended registers. We have solved this synchronization problem with the Reduce command which
defines the correct instants for starting the GC. Prolog is suspended inside this command if there i5 not
enough memory to continue. With this solution, one has o decide of a maximum amount of memory which
can be allocated belween two executions of the command Reduce. Prolog is suspended if the free memory
is smaller than this amount. For Prolog, this amount can be bounded by the size of the largest clause.

4.2 The garbage collector
4.2.1 The main loop of the cullector
For each choice point, the collector copies its goal statement using Cheney’s algorithm (4-4). Then,

the trail is updated before going on with the next choice point. This is donc by the procedure
UnTrailOneElt (4-5).
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For synchronizing reasons explained in §4.2.4, only one element of the trail is processed at a time : the
procedure is also in charge to prime the copy of the next level when the end of a segment trail is reached
and to signal the end of the backtrack stack.

while (tru=) |
walt (Star-tGl)
while (True) |
CopyLewvel{)
1f (UnTrailfneElt () '= EndOflevels) exit

[ Ia S L S BT

figure 4 : main loop of the collecior

4.2.2 Copying a goal statement

Copying a level, figure 5, consists in & simple loop to update the references within the segment of memory
situated between indexes C and M. The loop ends when C=M. Of course, this process might involve
copying new information in the copy area, this is done by the procedure Newversien, figure 6.

Notce that not all words are visited (5-4). The procedure AL _owedVisit, not detailed here,
successes only if M does not point to the atiribute of a bound variable or o the goal statement of 2 LEVEL.
According wo the stratification principle

= the armibuie of a bound variable is copied while updating its wail element (9-9), see §4.2.4.2,
* the goal statement of a level is copied when the collector primes the copying of this level (8-8).

Copylevel () |
while (M = C} |
M o— M - 1

if (AllowedVisit)
exgluszion {(Copylbi) *M = XewVersion (*M)

o B N T R L ]

figure 5 : copving an entire goal statement

4.2.3 Getting the new version of an object

The NewVersion procedure, figure 6, gives the reference w a new version of an object, either by
copying the object (6-16), or by using its forward reference (6-12).

This procedure is alse in charge of shunting variables {6-14) when they have been marked "shunted”
(9-12).

z WORD NewVersion (W)

2 WORD W o

3 {

1 switch W.tag

5 cage T atom, T free,

] T_trail, T refvar, T refvara

7 returgi{vw) ;

g gage T_cons, T_var, T vara, T_ievel, T_age
Bl il (InToSpace(wW,info)

10 return (W)

11 elseif (Forwarded(W})

12 retuarn({W.info}->info}

13 elseif (IsShuntedvar (W)

14 retoirn (NewVersion({ (VAR*} W.info)—>binding))
15 else

16 retuzg (Copy (W)

17 }

1k }

19 1

figure 6 : pive the new version of an object
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Critical section for copying objects : the mutator and the collector are both involved in copying
abjects, Hence, the presence of the ¢rrtical sectior CopyOb3, (5-5), (8-3) for the collector and {11-3),
(12-15) for the mutator. The exclusion alse includes the update of the WORD pointed to by index M.

WIORD Copy (W)

WORD W

i int 3Size = 53izeCfObject(W.tag)
1f {(W.info —— nil) returo (W) ;
{ = C-5ize ;
CopyBlock (Size, W.info, C)
*(W.irfo) .tag=T forwurd; *{(W.info).info-C ;
W.info = C ;
returrn (W}

= 0 ] O LA L N e

fipure 7 : Copv and forward an objcct

4.2.4 Updating the trail

Once a goal statement has been copied, the trail segment it holds is copied and updated. Early reset iy
applied and shunted variables are marked shinfed. The procedure tackles only one element at a time, the
iteration for a trail section is done by the Joop of the collector (4-3).

1 ECL UnTrailCneELt ()} {

2 exclusion {(Traill} ¥

3 if {(8M = nil) return Znd0flevels ;
4 1L (TM->info = ail) |

5 exclusion (CopyQhbj)

& SM->goal = NewVersicn(SM-»goal]
7 SM = {(SM->next).info ;

a TM — {(SM->trail) .info

3 ]

1% else UpdateTrailE-t () ;

1. returs NotFndOflevels

1
1

ta B
—

figure 8 : visiting a trail section

Critical section for manipulating trailing information ; the trail may be pushed down by a
Backtrack command, therefore, updating a trail element may not be done in parallel with such a
command. Hence, the presence of the critical section Trail, ¢(X-2) for the collector and (12-2) for the
mutator.

The synchronizing problem happens when the mutator backtracks to a choice point which has not yet
been visited by the collector (12-14). In that case the collector must stop its untrailing process, because trail
elements are no more significant. When such a deep hackmrack occurs (12-14), the backtrack stack seen by
the collector is forced to shrink (TM and SM registers are updated (12-19)) and the CopyLevel process
is primed with the roots of the recovered level (12-16). After the Backt mack command, the next iteration
of the collector loop (4-3) will see a nonempty quene between C and M and will pursue the copying of this
level even if it was currently tackling a trail section.

4.2.4.1 Implementation of early reset and variable shunting

When updating a wail element three cases must be considered :

{L) useful binding (the variable has already been copicd) :
{I.1) useful free variable (the variablc is older than the next choice peint) :
the trail element is copied to be kept in the trail; for an attributed variable a new version of its
attribute is ohtained, figure 10;
(1.2) useless free variable (variable is younger than the next choice peint) :
the trail element is discarded and the vardable is marked shunted,

(2) nseless binding (the variable has not been copied):

the trail element is discarded and the variable is reset free.
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1 TpdateTrallBLlE (}

z { WORE RefVar ; LEVEL * AgeldfVar

3 Refvar = {TM->info}->var ;

< 1f (Forwarded(RefVar)) | /*{ly=/

5 BefVar.:Infn = {(Refvar.info)-=infa ;

& AgeOfvar — ({{VAR*) RcfVar. nfol->age).inlo
7 Il (RAgeOfvar !— SM) | A B B

& exclusion (Copy) TM* = Copy(THM®)

9 UodateAttribute (RefVar}

10 }

11 slse | FH(L.2) %/

12 SetShunted (Refvar) .

13 TM* — {"M->inlo)] =»rext

14 1

h 1

iG e.se | FAR V3 R

7 ((VAR* Refvar.inlo}->binding).tag = free;
12 DM = (TM->info)—>next

1% 1

20}

figure 0 : visiting a trail elernent

Armributes of shunted variables (9-11) does not need to be updated, this is because such atuributes will
never be accessed.

4.2.4.2 Copying attributes with the correct binding environment

The auributes of bound variables are not updated in a standard way. This is 1 avoid copying an atribute
with an incorrect binding environment. Auributes are copied while visiing the wail (9-9).

Jpdatepd-tribute{RefVar)
WORD Refvar ;
{WORD *RefAttrib ;
Jif (RefvVar.taqg == T_refvara)
exclucion (CopyCbi) |
PefAltrib=8 ({ (VARA*)RefVar, inlo} -»attribute};
*RefAttrib = NewVersion(*RefAttrib)}

[T R B T R S

figure 10 : updatng the ateribute of a bound VARA

4.3 Examples of commands

To illustrate the interactions between the collector and the muator, some examnples of commands are given,
an access command (Le £1}, the backirack command (Backtrack) and a binding command (Birdvar),

4.3.1 How the mutator is involved in copying objects

The command e ft returns the lefi component of a binary "cons” term. In case this component is a
reference to an object stll in the fromspace, the command applies the NewVe rz ion procedure. Therefore,
Prolog system never gets any reference into the fromspace and the allocation area will never contain any
reference 10 the fromspace. Of course, the NewVersion procedure may enforce the copy of an object.

Command WORE Left (Cons)
WORD Corns ;
{ exclusion {(CopyObi)
return (NewVersicn({ (CONS=) Cons.iafo)-»left})

L L T

b
figure 11 : Accessing a cons, the command Left
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4.3.2 Synchronizing problems while backtracking

"The command Backt rack retrieves the top of the backirack stack. Due to concurrent use of the trail,
this command is executed under the Trail exclusion. Variables belonging to the current trail section are
reset and registers G, § and T are updated. If the collector has not yet started the copy of the recovered
choice point, (12-14) this is what we have called 2 deep backirack condition, §4.2.4, the backtrack stack
seen by the collecior is forced 1o shrink (12-19).

1 g} Backtrack() {

2 >xelusd {(Trail)y |

3 TRAIL * 2T = {({{TRAIL*] T.info)}-rnext).info ;
4 while (T7 != nil) ¢

5 VAR * Refvar = (TT->var).info ;
[ {Refvar->hindirg) .tag — free ;
7 TT := TT-=next ;

8 b

9 LEVEL * ChoicoePolnt = S.into ;

12 G = CheolcePoint->goal ;

11 Clause = ChoicePolnt->clause ;

1z 8 = ChoicePoint-> next ;

13 ((TRAIL*) T.info)-»>next = CheicePolnt->»trail
14 1f (ChoicebPoint == 3SM} |

15 exclusion (CopyCbl}

16 G = MewVersioni{G) ;

17 S = HewVersion{S) ;

18 H

139 5M = 3.info

20 ™ = &{{{TRAIL*} T.infn)->next)
2 }

22 }

23

figure 12 : Backtracking operation, the command Backtrack

4.3.3 An example of allocation : binding a variable

This command BindVar creates an etapty trail elernent requiring two words in the allocation area. At
the beginning, there is a check (13-4) to sce if there is cnough space in the allocation area. The test is meant
to always succeed because the system is supposed to be suspended inside the command 2educe if space
is insufficient (see §4.1).

1 Comnand BindVar-(Var, Term)

? WCRD Var, Term

3 { WORD * NewT ;

4 CheckAllocation(2);

S {{VAR *}Var.info)}->binding = Term ;

3 {({T.irfa)->var).info = Var.info

7 {(t++hA}->tag = 1 _refvar ; /* creating a ncw empty */
8 A->info = nil /* traii clement */
a Newl = A ;

10 (+=A)->tag = T trail ;

11 A-rinfo = T.infc ;

12 T.info = NewT.info ;

13

figure 13 : Binding a variable, the command BindVar
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5 Implementations of Realtime garbage collectors

We have impletmented twao kinds of realtime garbage collectors, a pseudo-paralle] and a paratlel one.
5.1 pseudo-parallel garbage collectors

The pseudo-parallel GO emulates two processes on a single processor, The first process is the Prolog
system and the second is MALLI garbage collector. The code for both processes is written in C. A
corroutining mechanism provides sequencing between the two processes. Garbage collection is done
incrementally . the smallest grain of work is either an iteration of the Copyievel loop (5-2) or an
execution of procedure UnTrailoneE Lt (figure 8). These steps of garbage collection may be done each
time a mutator command requires memory allocation. Therefore the garbage collecting time is spread along
Prolog interpretatinn time, but the two processes never work really in parallel.

In this implementation, the Copy and Tra il exclusions are naqurally realized by the chosen step of
garbage collection.

5.2 parallel garbage collectors

To implement vur parallel GC, we have chosen a private memory architecture, figure 14 : one processor,
MALL, supports the garbage collector together with the commands and has exclusive access o Prolog
memory state. The other processor, the host, supports Prolog interpretation. The two processors
communicate via a $mall shared memory. Processor MALI is a specially microprogrammed processor
board to be instulled in an IBM PC compatible computer.

Prolog. commands
state MAL] =
memory rOCESSOT Shared
registers
Garbage collection Prolog clauses
+ interpretation

Commands execution
figure 14 : a MAL]J processor architecture

The GC process runs as a background task. Commands sent by the host are processed by the mutator
as interruptons.

The Copy exclusion is realized in the GC code by disabling interruptions of the micromachine.
Commands are delayed during the copy of objects, but this latency is rcasonably short, see §6.1. The
Trail exclusion is implemented with boolean variables plus a hardware mechanism to suspend and restart
a command. The time spent by the collector 10 process a trail element is long enough 1o justify such a
selective mechanism for implementing the Trail exclusion.

6 Discussion and results

The paralle]l garbage collector has been implemented on a PC AT with a SMHz 80286 interpreting
Prolog and a 6MHz microprogrammed processor built around an AMD 2916 supporting MALIL Compared
with a software version of MALI implemented in C on the same PC having a serial garbage collector, this
paralle] version showed a speedup factor of 2. This result is essentially due to the fact that the commands,
which roughtly represents 50% of the total execution time with the software version of MALIL are executed
on the specialized hardware which is about 10 time faster for that job.

The pseaso-parallel collector has been written in C and is poriable with Prolog on any computer. The
relative speed of the collector with respect (o the mutator is tuned by giving the number of collector steps
executed for each allocated word. The best execution time which has been observed with this
implementation is 30% longer than that of the serial collector implementation, and it was obtained for a
speed ratio less than one step per allocated word. Generally, for programs requiring 70% or less of the
metory, a real-time behavior is obtained for a collector speed between 1 and 2 steps per allocated word.
As expected, speed degradarion increases with collector speed, because useless collecting wark 1s done.
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6.1 Interferences between a parallel colicctor and the mufater

When the parallel collector is running the speed of the mutstor is somewhat reduced by two agents,
+ The latency of execution of the cummands is increased because the collector must complete the
atomic action it is currently doing. kn our implementation, this latency has been measuored to be about
10% of the command execution fime,
+ As we have said earlier, the mutator may be forced to copy objects. The time spent for these copies
has been measured indirectly and represents between 10% to 15% of the command execution time.
Therefore, the command execution time 15 around 20% slower when the collector 1s running. In our
system, due to the specialized implementation of commands, MALI commands represents only 10 ©
2¥% of the total execution time of Prolog. So the overall degradation induced by the parallel collector is
only 3% 10 4% of the iotal system performances.

6.2 Instant reclaiming on backtracking and realtime garbage collector

[n a conventional Prolog system, space is immediately reclaimed on backtracking. With our GGC, this
reclaiming 15 not entirely applicable because the order of objects in memory is modified by Chenzy's
copying technique. On backtracking, we can only reclaim memeory in the allocation area, where objects are
still located in creation order.

The cxpected normal furctioning, also called stable functioning, of such a collector is when the collector is
fast enough to aveid suspensions of the mutator for aliocation reasons. In our system, the immediate
reclaiming in the allocation area has proved to be amply sufficient 1o slow down appareat consumption of
mernory 5o that the garbage collector follows in real time the mutator needs.
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