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Preface 

Mathematicians have long recognized the distinction between an argument showing 
that an interesting object exists and a procedure for actually constructing the object. 
Sorne reject non constructive proof of existence as invalid, but even those who 
accept nonconstructive proof usually value the additional insight given by a mental 
construction. Computer science adds a new dimension of interest in constructivity, 
since a computer pro gram is a formaI description of a constructive procedure that 
can be executed automatically. So, computer science motivates an interest in con­
structions as objects with useful behaviors, in addition to the mathematical interest 
in constructions as direct sou~ces of insight. That constructivity has assumed much 
importance in computer science is reflected in the title of this symposium, mir­
roring the name of the first colloquium: "Constructivity in Mathematics" (Heyting, 
1957). 

The Symposium on Constmctivity in Computer Science was sponsored by Trinit y 
University, the University of Chicago, and the Association for Symbolic Logic. 
The symposium drew participation from Canada, France, Germany, the People's 
Republic of China, Sweden, the United Kingdom, and the United States of America. 
Topics discussed were quite diverse, induding semantics and type theory, theorem 
proving, logic, analysis, topology, combinatorics, nonconstructive methods in graph 
theory, and a special track on curriculum and pedagogy. 

This volume contains papers presented at the symposium. Preliminary written 
versions of papers were distributed, in addition to the lectures. The presentations 
stimulated very lively discussion, and the papers have been revised based on the 
feedback from those discussions. 

Serge Y occoz presented a paper, Sorne Properties and Applications of the Lawson 
Top%gy, which was not available for these proceedings. The paper of Thierry 
Coquand, who was unable to attend, was delivered by Chetan Murthy. 
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Connecting Formal Semantics to Constructive Intuitions 

Stuart A. Kurtz John C. Mitchell 
The University of Chicago Stanford University 

Michael J. O'Donnell 
The University of Chicago 

1 Abstract 

We use formai semantic analysis to generate in­
tuitive confidence that the Heyting Calculus is 
an appropriate system of deduction for construc­
tive reasoning. Well-known modal semantic for­
malisms have been defined by Kripke and Beth, 
but these have no formaI concepts corresponding 
to constructions, and shed little intuitive light 
on the meanings of formulae. In particular, the 
well-known completeness proofs for these seman­
tics do not generate confidence in the sufliciency 
of the Heyting Calcul us, since we have no rea­
son to believe that every intuitively constructive 
truth is valid in the formaI semantics. 

Lauchli has proved completeness for a realiz­
ability semantics with formaI concepts analogous 
to constructions, but the analogy is inherently 
inexact. We argue that, in spi te of this inexact­
ness, every intuitively constructive truth is valid 
in Lauchli semantics, and therefore the Heyting 
Calcul us is powerful enough to prove ail con­
structive truths. Our argument is based on the 
postulate that a uniformly constructible object 
must be communicable in spi te of imprecision 
in our language, and we show how the permu­
tations in Lauchli's semantics represent conceiv­
able imprecision in a language, independently of 
the particular structure of the language. 

We look at sorne of the details of a general­
ization of Lauchli's proof of completeness for the 
propositional part of the Heyting Calculus, in or­
der to expose the required model constructions 
and the constructive content of the result. We 
discuss the reasons why Lauchli's completeness 
results on the predicate calculus are not con­
structive. 

2 General Introduction 

This paper presents a detailed outline of a theee­
part lecture given by Michael J. O'Donnell at the 
symposium on Constructivity in Computer Sci­
ence. The lecture describes collaborative work 
in progress by the three authors above, attempt­
ing to use formai proofs of completeness for the 
Heyting Calculus to provide intuitive confidence 
that ail constructively true propositional formu­
lae are provable. Feedback from the symposium 
participants, and particularly a very detailed and 
cogent critique from James Lipton of the Uni­
versity of Pennsylvania, helped substantially in 
improving the presentation and the scholarship 
of the work. 

The speaker tried to stimulate thinking on a 
number of side topics, and to connect to many 
of the issues raised in other papers at the con­
ference, but did not attempt a thorough survey 
of the area. Sorne technical improvements to 
formai systems and proofs of completeness are 
introduced, but they are ail variations of previ­
ously known results. The goal of the lecture is 
thorough understanding of known technical re­
sults and their connection ta intuitive concepts, 
rather than new technicalities, or a thorough sur­
vey of known results. 

Section 3 presents the lecture as an outline, 
rather than a narrative. Part 1 introduces the 
basic intuitions of constructivism, and describes 
the types of insights that we hope to get from a 
formaI semantic treatment. It describes Kripke's 
and Beth's formaI semantics for constructive 
logic, and explains why these do not give the de­
sired insights. Part II introduces the realizabil­
ity and formulae-as-types approaches to seman­
tics. It defines Lauchli's version of realizability, 
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based on permutation-invariant functions, and 
explains permutation invariance as a plausible 
necessary condition for reliable communicability, 
and therefore for constructibility, of a function. 
Finally, Part III gives the formai proof that the 
Heyting Propositional Calculus is complete for 
Lauchli's realizability semantics. 

3 The Lecture 

L First part: Introduction to constructivism, the 
intuitive use of semantics. 

I.A_ What is "constructivism"? 

LA.!. We seek a useful formalism for a reason­
able constructive philosophy, not a treatment of 
a particular historical school, such as intuition­
ism. 

--2. The basic intuition of constructivism is 
that, by asserting the proposition a we daim to 
have a mental construction verifying a. The pre­
cise meaning of "construction" is problematic. 
A number of philosophers and mathematicians 
have discussed the problem, induding Heyt­
ing [19], Dummett [7], Beeson [1], Kleene [25]. 

--3. Here are sorne examples of classically true 
formulae that are rejected by constructive logic. 
They are not ail equivalent. See [22, 7, 50, 47] 
for discussion of their various strengths. 

LA.3.a. a V ~a (excluded middle) 

--b. a V (a =} fJ) 

---co ~~a =} a (double nega/ion elimina/ion) 

--do ((a =} fJ) =} a) =} a (Peil'ce's law [36}) 

--f. (a =} fJ) V ((a =} fJ) =} a) 

--go (a =} fJ) V (fJ =} a) 

--ho ((a =} fJ) =} ,) =} ((fJ =} a) =} ,) =}, 

--i. a V (a =} fJ) V ~fJ 

--j. ~a V ~~a V (a =} (~fJ V ~~fJ)) 

I.A.4. Formai system: Heyting Propositional 
Calculus [18J-essentially Classical Propositional 
Calculus without the law of exduded middle. 

I.B. Semantics: the study of meaning. 

2 

LB.!. The use of semantics: justify and explain 
a formai system of inference by clarifying its con­
nection to intuitive meaning. The intensional 
structure of formai semantics, not the mere ex­
tension of the class of true formulae, connects for­
malism to intuitive meaningl . We must inspect 
carefully and rigorously, but informally, the con­
nection between formai semantics and intuitive 
meaning, then examine formally the connection 
between formai semantics and a formai system 
of illference. 

LB.2. Notation: Given a fixed system of proof, 
let F be a formai semantic system. F provides a 
set of possible interpretations for atomic propo­
sitional symbols and, for each interpretation, cri­
teria for marking certain formulae "true". Let a 
be a formula, and let r be a set of formulae. 

• r 1- a means that a is provable when rare 
assumed. 

• r 1= a means that a holds intuitively when­
ever the assumptions in r hold. 

• r I=F a meallS that a is marked true in ev­
ery F-interpretation for which ail assump­
tions in rare marked true. I=F is the logical 
consequence relation induced by F. 

I.B.3. Intuitive vs. formaI measures of strength 
of a formaI system. 

I.B.3.a. Faithfulness2 : rI- a implies r 1= a. 

--ho Soundness: rI- a implies r I=F a. 

--co Fullness: r 1= a implies r 1- a. 

-do Completeness: r I=F a implies r 1- a. 

LB.4. To go from soundness for I=F to faith­
fulness for 1=, we need to show intuitively but 
rigorously that r I=F a implies r 1= a. That is, 
I=F is a lower bound for 1=. This argument is 
usually very simple. 

--5. To go from completeness for I=F to full­
ness for 1=, we need to show that r 1= a implies 
r 1= F a. That is, 1= F is an upper bound for 
1=. This argument is usually difficult, and may 

l'Tarski'. classical semantics [44J are usefullargely he­
cause they reveal meaning from syntactic structure, al­
though Tarski claimed Ihal he ooly wanled 10 mark Ihe 
true formulae. 

2Feferman has related concepts offaithfulness and ad­
equ.cy [9, IJ. 
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