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Modal Linear Logic 

Dimitry A. Archangelsky and Mikhail A. Taitslin 

62 Mojayskogo Str., Apt. 265 

Tver, 170043 

Russia 

Abstract 

In this paper we continue our study of Girard's Linear Logic and introduce a new Lin

ear Logic with modalities. Our logic describes not only con81<mption, but pre3ence of 

resources as weil. It describes transformation of resources not only for the single point but 

for sorne net, where supplies can be sent from one object to another one using interfaces. 

We introduce a new semantics and a new calculus for this logic and prove the completeness 

theorem for this calculus in respect to our semantics. 

1 Introduction 

This paper continues the study of Girard's Linear Logic, began by Girard in [1,2] and 

developed by Abramsky [3], Lafont [4],[5], Lincoln, Mitchell, Scedrov, and Shankar [6], 

and Kanovich. 

In Linear Logic the statement "r implies f;." means that pre3ented re8ource8 r can be 

transformed into resources f;., being spent completely. Although programming interpreta

tions of Linear Logic were devoted to describing this situation, in our view these attempts 

did not achieved their declared aim. In previous formalizations the condition of resource 

presence is not, in fact, taken into account. In our formalization this gap is eliminated. 

Note that, in correspondence with the traditional Linear Logic approach, the consumption 

of converters is also taken into account. 

Also our formalization describes each concrete situtation, but 'not' properties are true 

always. 

The real situation is not that an object acts separately, but that a net of connected 

objects circulates supplies. Usually acceptable tools of transformation of supplies are in 

fuced places and the net does not transmit them. Our formalization is an attempt to reflect 

this. 

We introduce sorne restrictions on the architecture of the nets, supposing that the 

net has the tree form. This corresponds to the modern point of view on computer net 

organization. Computers used as terminals may use their own supplies as weil as the 
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supplies of sorne larger computer with which they may be directly connected. In tum 

this larger computer and others similar to this one may be connected with sorne bigger 

computer and 50 on. Supplies may be transmited not only from sorne directly connected 

computer, but also from a more remote computer via a link of direct connections. 

All previous definitions of Linear Logic were based on constructing systems ofaxioms 

and did not propose any theoretical-model semantics. We have attempted to eliminate 

this omission as weIl. 

2 The model 

We fix a fini te set S. The elements of S will be called supplies. We fix a finite set Pro 

The elements of Pr have the form X ...... Y, where X and Y are sequences of supplies. The 

elements of C will be called basic converters. The elements of the union S U Pr of the 

sets S and Pr are called basic resources and are denoted by R. We denote the set of all 

natural numbers by W. 

The model is a finite tree whose nodes are objects. The object is a mapping from R 
to W. For r from R and for an object a, a(r) denotes the number of copies of the resource 

r at a point a. 

If a and (3 are objects and (3 is a direct successor of a, then we write (3 «a. Let 

(3« la, if (3« a or (3 is a, and let, for i > 0,(3« i+la be (3« 1')' and ')'« ia 

for sorne object ')'. Let (3« 00' if (3 is a. 

3 The language 

The expressions of the language are built from symbols of the following sets: 

S - the set of propositional variables called suppliesj 

f- - symbol of sequentj 

...... - symbol of the binary propositionallinear implication operationj 

o - symbol of modal operationj 

(,) - brackets. 

The set SL~t of supply lists is the least satisfying the following conditions: 

S ç SLi$tj 

if A, B E SList, then (AB) E SLi$t. 

The set For of formulas is the least satisfying the following conditions: 

S ç For; 

if A,B E For then (AB), (A ...... B),oA E For. 
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