
w. Vogler

Modular Construction and
Partial Order Semantics of
Petri Nets

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Author

Walter Vogler

Juris Hartmanis
Department of Computer Science
Corne Il University
5149 Upson Hall
Ithaca, NY 14853, USA

Institut für Informatik, Technische Universitat München
Postfach 202420, W-8000 München 2, FRG

CR Subject Classification (1991): 0.2.2, F.I.2, F.4.3

ISBN 3-540-55767-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55767-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Ali rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must al ways be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Foreword

The concept of the computer and the ways to use it as weIl as the understanding of what
(theoretical) computer science is or should be have undergone rather deep changes since
the IIÙddle of the 1930s when the first real computers were designed and built and the first
theoretical concepts of computers and computability, of programs and their description
were developed and studied. Traditional computer science is based on the paradigm of se
quential computations to evaluate functions, briefly sketchable by the metaphor of a single
individu al considered as a calculator (see Turing's argumentation for the definition of his
machine model). Today, the computer serves much more diverse and complex purposes;
it has to be considered as a component in a distributed, interactive system composed of
humans, computers, machines, and other artificial or natural dynaIIÙc systems, such that
notions like communication, coordination, collaboration, cooperation, etc., play a more
and more important role - and the new metaphor now is a group of individuals engaged
in sorne or ail of the four "co" -activities just mentioned (for more details on this, see Lect.
Notes in Computer Science 555).

This new view of informatics is not only due to technological developments and ap
plication requirements, but also to research in theoretical informatics, in particular in
the field of Petri nets. Petri nets allow us to model (distributed, concurrent) systems
by a formalism which separately represents (local) actions, (local) states and the (local)
interrelations between the holdings of states and the executions of actions (which means
that the structure as weil as the dynaIIÙcs are described in the same formalism).

The formalism of Petri nets allows for very detailed descriptions on an operationallevel.
This makes it necessary to develop methodologies and techniques for modular construction
of Petri nets and for appropriate behaviour descriptions. Since there are also several other
formalisms for concurrent systems, there also exist many modular construction techniques
and behaviour notions for such systems - and in particular there has been much discussion
on the adequacy of semantic notions, in particular (since Petri introduced the idea in 1976)
on the necessity of using partial-order semantics. In this book, Vogler studies this issue
in depth - he starts with the most basic techniques of Petri net construction and with
requirements on the nets to be constructed, and then shows which notions are minimally
required. This way, he can for example prove that failures semantics (which originally
was developed for TCSP) is just the right notion to characterize the constructability of
deadlock-free nets by TCSP-like parallel composition. The most important contribution
perhaps is Vogler's study of action refinement - he was the first to provide formaI results
on the adequacy of partial order semantics and branching equivalences for the study of
action refinement, and moreover he even shows that only a restricted type of partial orders
(the interval orders) are necessary.

Vogler's approach allows him to systematically study the broad spectrum of con
struction, semantics and equivalence notions in such a way that many of their inherent
properties and their interrelationships become much clearer, and many more or less philo
sophical discussions of the past are now obsolete. On the basis of this (and selected work

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VI

by other authors), it should now be possible to study problems of practical applications
of these notions within con crete methodologies of system construction.

München, June 1992 Wilfried Brauer

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Preface

Petri nets are a well-known model for parallel systems, used for both applications and
theoretical studies. Like any formaI model, the y can be used for specification, modelling
and analysisj Petri nets in particular offer a graphical representation and a clear view
of concurrency. For the design of large systems, modular construction is indispensiblej
hence, considerable effort has been spent on studying the modular construction of Petri
nets. This book presents sorne contributions to this research area.

In bottom-up design, nets are put together and the intention is to determine the
behaviour of the composed system from the behaviour of its componentsj as operators
for the combination of nets we consider parallel composition with synchronous and with
asynchronous communication. For the top-down design, we study the refinement of the
elementary parts of nets, i.e. of places and transitions. A refinement step is performed
with one of two possible intentions in mind. Either the refined net is expected to have the
same behaviour as the unrefined net, in which case we speak of a behaviour-preserving
refinementj or we expect that refining two nets with the same behaviour leads to nets
that have the same behaviour again, in which case we speak of an equivalence-preserving
refinementj the equivalence-preserving refinement of transitions is also called action re
finement.

This book presents behaviour descriptions that support these modular construction
methods of nets. Many such descriptions are possible. Therefore, special care is taken
to justify the descriptions presented here by showing what is called full abstractnessj i.e.,
when considering sorne construction method, we not only present a suitable behaviour de
scription, but also show that it makes exactly those distinctions of nets that are necessary
to support the given method and to take into account sorne simple feature of behaviour
like deadlock-freeness. For example, failure semantics is the right behaviour description
for constructing deadlock-free nets using parallel composition with synchronous commu
nication. As one of the highlights, we show that in order to support action refinement and
to take into account failure semantics sorne form of partial order semantics is necessary.

This work is a revised version of my Habilitationsschrijt written at the Technische
Universitiit München. It would not have been possible without the support l have received
from many people. First of ail, my thanks go to Professor W. Brauer for the good working
atmosphere he has created in his group and for his helpful advice and valuable comments
over the last few years. l also would like to thank Professors M. Broy and M. Nielsen, who
acted as further referees of my H abilitationsschrijt. l am particularly grateful to Professor
R. Halin, who guided my way through graph theory before l changed over to computer
sCIence.

l have profited from numerous discussions with many people, and l am especially
grateful to ail my former and present colleagues from Hamburg and München. For many
years, Dirk Taubner has shared an office and his knowledge especially on failure semantics
with me, and our discussions have helped me a lot. l am also greatly indebted to Eike
Best, Jorg Desel, Volker Diekert, Rob van Glabbeek, Robert Gold, Ulla Goltz, Astrid

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VIII

Kiehn, Wolfgang Reisig, Thomas Tensi, and Rolf Walter.
Work on this book was partially supported by the Deutsche Forschungsgemeinschaft,

Sonderforschungsbereich 342: Methoden und Werkzeuge zur Nutzung paralleler Rechner
architekturen, TU München, and the ESPRIT Basic Research Action No. 3148 DEMON
(Design Methods Based on Nets).

Last not least, l thank Harald Hadwiger and Dieter Stein, who have helped me enor
mously to transform my notes into a ~TEX document.

München, June 1992 Walter Vogler

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Contents

1 Introduction

2 Petri Nets and Their Semantics
2.1 Basic notions of Petri nets . . .
2.2 Partial order semantics of nets.
2.3 Branching-time semantics of nets

3 Parallel Composition and Deadlocking
3.1 Parallel composition with synchronization
3.2 External equivalences based on deadlocking and divergence
3.3 Modifications of failure semantics

3.3.1 Modifications for safe nets
3.3.2 Modifications for reachability and liveness
3.3.3 Further modifications

3.4 Further operators and congruence results

4 Behaviour Preserving Refinement of Places and Transitions.
4.1 Refinement techniques
4.2 Deterministic nets and the refinement of places
4.3 Composition by merging places
4.4 I,O-nets and the refinement of transitions.

5 Action Refinement and Interval Words
5.1 Introduction to action refinement .. .
5.2 A technique of action refinement
5.3 Action refinement and linear-time semantics
5.4 A doser look at interval words
5.5 Comparison of interval words and interval semiwords

6 Action Refinement and Bisimulation .
6.1 Partial orders and bisimulation
6.2 Event structures and action refinement
6.3 Congruence results for ST-bisimulations
6.4 History-preserving and OM-bisimulation

7 Partial Order Semantics for Nets with Capacities
7.1 Compositionality
7.2 Complementation-invariance and capacity-orientation
7.3 S-modification.

Concluding Remarks

Bibliography

Index

1

9
9

14
25

33
33
42
55
55
58
65
69

75
76
80
94

109

131
131
137
146
158
172

183
183
186
194
208

217
218
225

. 235

239

241

250

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Chapter 1

Introduction

A concurrent system, such as a network of processors, an operating system, or a manufac
turing system, consists of several partly autonomous components, which run in parallel
and influence each other by interactions. Thus, to determine the behaviour of the system
it is not enough to know how each of its components in isolation transforms initially given
input objects like data or raw materials into output objects produced at the end. In the
case of a sequential system this would be sufficient; for example, the behaviour of a proce
dure in a sequential program can be defined as a function from memory states to memory
states. But for a concurrent system, we also have to know how each component reacts to
outside influences and how it influences its environment while it is running. In fact, the
same applies to the entire system in so far as it interacts with its environment and is thus
itself a component of a larger system. Furthermore, the activities of the components may
be unsynchronizedj as a consequence the interaction of the system components may have
the effect that the entire system behaves nondeterministically, even if its components are
deterministic. For example, if two senders share a channel, the behaviour of the system
may depend on the timing of their messages.

In view of these complications, the design of concurrent systems particularly requires
a formai method. In the design process an informai conception is transformed into a
formai system model, and the first benefit of the formai model is that its development
helps to uncover deficiences and ambiguities in the informai conception. Once the model
is completed, it can be analyzed formally and relevant properties can be verified, or at
least the concurrent system can be tested by means of a simulation.

In the approach we adopt in this book, the behaviour of a concurrent system is de
scribed in terms of the actions it can perform. Here an action is any activity that we
view as a conceptual entity; in particular, it may be an act of communication. A simple
behaviour description of this kind is the set of ail possible sequences of actions. But this
semantics has been criticized in two points.

First, the concurrent execution of actions is seen as equivalent to arbitrary interleaving,
i.e. to executing these activites in an arbitrary order. Thus concurrency is simply reduced
to sorne form of nondeterminism. Such a semantics is called an interleaving semantics.
Alternatively, one could try to represent concurrency explicitly, e.g. by describing a system
run by a partial order of actions. Such a semantics would be 'truly concurrent'.

Secondly, the ab ove semantics gives no information about the nondeterministic choices

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

2 Introduction

that have been made during a system run, about the branching structure of the system
behaviour. Such a semantics is called a linear-time semantics. In order to give a branching
time semantics one must not only compare system runs, but also consider how internai
conflicts are resolved. Prominent branching-time semantics are failure semantics [BHRS4]
and bisimulation [ParS! ,MiIS3].

These considerations show that there is more than one way of defining the behaviour of
a system. Which definition is chosen depends on the system properties that are regarded
as relevant. It is even feasible to view a simple property as the behaviour of a system,
e.g. the semantics of a system possibly is just to be or not to be free of deadlocks.
Thus we cannot expect to find the behaviour of a concurrent system. Instead we can
compare various semantics and study their properties. A most important requirement for
a semantics is that it support the modular construction of systems.

To reduce and manage system complexity we have to design large systems in a modular
fashion either bottom-up by composing subsystems with known behaviour in such a way
that we can determine the behaviour of the whole system from its parts, or top-down by
refining parts of a rough mode! by more detailed system descriptions. In the latter case
we either ensure that the behaviour is essentially preserved or proceed again in such a way
that we can determine the behaviour of the refined system from that of the rough model
and the refinement, in which case we speak of an equivalence-preserving refinement. In
ail these cases, systems are constructed from building blocks, and a semantics supports
the modular construction of systems if it describes the behaviour of the building blocks,
i.e. their interfaces, in such a way that we can control the behaviour of the entire system
as just described.

This book contributes to the theory of designing concurrent systems with Petri nets.
A Petri net is a formai system mode! based on concepts from automata theory, linear
algebra and graph theory. Besides the general advantages of a formai model and the
verification methods based on linear algebra, Petri nets are additionally attractive since -
as graph-theoretic objects - they have a graphical representation. Already in the design
pro cess this graphical representation offers a visual impression of the concurrent system
and how it is built from subsystems and distributed in spacej it gives a clear image
of concurrency, sequentiali ty and conflict, both on the concrete visual level and on the
abstract graph-theoretic level.

In particular, the visualization of concurrency makes it very natural to consider con
currency as a feature that deserves a proper presentation on the semantic level. Petri net
theory has a long tradition in studying 'true concurrency' in the semantics of concurrent
systems. Most often 'true concurrency' is captured by giving a semantics based on partial
orders, and partial orders also invite a graph-theoretic representation as Hasse diagrams.
On the other hand, the branching structure of systems has not been given much attention.

It must also be mentioned that modularity as described ab ove has been a somewhat
weak point of Petri net theory. A Petri net is defined as a whole and not in the first
instance obtained by composing subnetsj correspondingly its semantics, i.e. the firing rule
or a derivative of it, does not rely on the semantics of sorne subnets, although the firing
rule is local in char acter .

This is totally different in pro cess algebras like CCS [MiISO,MiIS9], TCSP [BHRS4,

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Introduction 3

Hoa85] or ACP [BK84]. Here systems are described by process terms, which are by
nature built from subterms. Naturally, the semantics of a process term is obtained from
the semantics of its subterrns, no matter whether the semantics is an operational semantics
defined according to the structured operational approach of [Plo81] or a denotational
semantics. Thus process algebras are a priori compositional.

Traditionally, in process algebras concurrency has been reduced to interleaving; this
may be due to their roots in algebra. Often it has been argued that interleaving is
simpler than 'true concurrency' and just as expressive, i.e. sufficient for any practical
purpose. Instead, the emphasis has been on studying the branching structure of processes.
Thus, while neglecting the dimension of interleaving versus 'true concurrency', process
algebra has concentrated on the orthogonal dimension of linear-time versus branching
time semantics, and vice versa for Petri net theory.

In recent years, both these approaches have increasingly influenced each other, and a
lot of effort has been made to combine their respective merits. Partial order semantics
for process terms have been developed, see e.g. [BC87,DDNM88,Old89,NEL89,Ace89].
Furthermore, semantics in terms of Petri nets have been given to pro cess algebras, such
that a process term, which is an operator applied to sorne subterms, is translated to a net
that is an appropriate composition of nets related to those subterms; see e.g. [GV87,GoI87,
GoI88b,Tau89]. This allows one to give sorne partial order semantics to process algebras
by translating a term to a net and taking (one of) its partial order semantics. Viewed the
other way, those nets that are translations of pro cess terrns form a restricted class of nets
for which several compositional semantics can be given if we apply results from process
algebra. Sirnilarly, several authors have suggested solving the compositionality problem
of Petri nets by working with restricted, more structured classes of nets that are built
from very simple nets, see e.g. the state-net-decomposable nets studied in [Bes88aJ, and
see [BDC92] for a survey.

Other authors have concentrated on solving the compositionality problem for the unre
stricted class of ail nets. They have suggested various transformations that are behaviour
preserving in sorne sense, and various composition operators such that the behaviour of a
composed net (in sorne sense) can be determined from the behaviour of its components,
see e.g. [And83,Bau88,Ber87,DCDMS87,Gra81,MüI85,Sou91,SM83,VaI79,Vos87]. This is
the area in which this book is located.

The system models in this book are labelled place/transition-nets without capacities,
i.e. place/transition-nets where the transitions are labelled with actions. As indicated
above, these are uninterpreted names of activities. Their use allows one to abstract
from details of a system description that are of no importance for the user of the system.
Transitions with the same label represent the same activity in different internai situations.
Very important is the use of À-Iabelled transitions, which represent internai activities that
are invisible for the user; thus we can abstract from activities that are important on a
low-Ievel system description when we consider the system behaviour on a higher level.

For the modular construction of nets we concentrate on two sorts of operators: parallel
composition with synchronous or asynchronous communication for the bottom-up design
of nets, and refinement of transitions and places for the top-down design. These operators
are especially interesting since they are also graphically meaningful. Given two nets,

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

4 Introduction

parallel composition corresponds to composition by merging transitions in the synchronous
case and to merging places in the asynchronous case. Given one net a refinement replaces
a basic net element, i.e. a place or a transition, by sorne net, thus giving a more detailed
description of a local state or an activity. Other operators are only touched upon, e.g.
hi ding, which allows one to abstract from details by turning sorne visible actions into
internai actions.

Typical for the approach of this book is the situation in Chapter 3. We define an
operator Il (more precisely a family of operators indexed by a set of actions that are to be
synchronized), and then we want to find out which nets, if combined with any environment
via Il, can be exchanged without changing the behaviour of the composed net; we cali such
nets externally equivalent following [Bau88]. At the same time we want to explore which
behaviour notions are suit able, since there is no general agreement about this point. This
makes the situation slightly obscure: either we should fix our behaviour notion, and then
we can try to characterize externally equivalent nets; or we should fix the exchanges of
nets we want to carry out, and then we can try to find out which behaviour is preserved
by such exchanges. Fortunately, our approach leads to quite a satisfactory solution for
this matrix of problems. First, we fix a very simple sort of behaviour, namely we just
distinguish deadlock-free nets from those that can deadlock. Then we give an internai
characterization of the corresponding external equivalence, i.e. we determine when nets
can be exchanged in any environment without referring in our characterization to ail
possible environment nets; namely, nets are externally equivalent if and only if they have
the same failure semantics. When proving this we find that exchanging failure-equivalent
nets preserves the failure semantics of the composed net. Thus our composition operator
together with failure semantics is compositional in the sense that we can determine the
behaviour of a composed net from the behaviour of its components. At the same time we
discover that exchanging failure-equivalent nets preserves behaviour in a much stronger
sense than originally required; thus our equivalence works for a whole range of behaviour
notions.

External equivalence is closely related to testing equivalence in the sense of [DNH84],
which refers to a notion of observability. In principle the reasoning for the above external
equivalence can also be expressed in terms of observability. But in this book the argument
is not that deadlock or divergence (infinite internai looping) are observable in sorne sense,
but rather that these are important features of behaviour that we must control in the
modular construction of a system. External equivalence is also closely related to full
abstractness [MiI77], which is a st ronger requirement: it considers the exchange of two
nets in any context built by applying the operators under consideration possibly many
times, while we consider contexts where we have only one application of an operator.
In other words, an internai semantics characterizing an external equivalence describes
the interface of a building block such that this description is sufficient to deduce the
relevant behaviour of a system constructed from two building blocks; on the other hand,
a fully abstract semantics describes the interface of a building block such that we can
determine the interface of a building block constructed from two building blocks, and thus
we can determine the relevant behaviour of a system constructed from any number of
building blocks. Naturally, the latter is to be preferred in general. But in ail natural
cases we consider, external and fully abstract equivalences coin ci de, and thus our results

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Introduction 5

are stronger if we start with the weaker requirement, i.e. if we start with the study of
external equi valences.

Our results can also be seen as a justification of failure semantics; they show that failure
equivalence is just the right equivalence, if we want an equivalence that is compositional
with respect to Il and are mainly interested in the deadlocking behaviour of systems. This
view is especially interesting in Chapter 5, where we consider action refinement. This
operator refines sorne action a by a more detailed description of this activity; it replaces
everya-Iabelled transition by a copy of sorne net. Regarding the dispute of interleaving
versus 'true concurrency', our results in Chapter 5 show that for a congruence for action
refinement that respects e.g. failure equivalence the power of partial order semantics is
needed. Thus we justify the use of 'true concurrency'.

As explained above, by modular construction we understand either composition or
refinement, and the latter is subdivided into behaviour- and equivalence-preserving refine
ment. Composition is studied in Chapters 3, 4, and 7. Chapters 3 and 7 are concerned
with synchronous communication, where Chapter 7 studies nets with capacities contrary
to the model we use in general. Asynchronous communication is treated in Chapter 4.
These chapters develop suit able interface descriptions for the composition of systems from
building blocks. Behaviour-preserving refinement is studied in Chapter 4; modules are
characterized that are suit able for replacing a transition or a place in any context, and
these results are obtained by putting behaviour-preserving refinement in the framework of
composition. Chapters 5 and 6 are devoted to equivalence-preserving refinement; Chap
ter 5 is concerned with linear-time and failure semantics, Chapter 6 with various types
of bisimulation. Here the emphasis is on the behaviour of the rough mode!. We develop
interface descriptions for the rough model that together with the inserted refinement nets
allow us to deduce the interface description of a partly refined model and finally the
relevant behaviour of the detailed system.

In more detail, we proceed as follows. Chapter 2 introduces Petri nets, where Sec
tion 2.1 briefly reviews the basic notions. Section 2.2 is devoted to the linear-time partial
order semantics of Petri nets; we define the well-known pro cesses (of nets) and partial
words and adapt them to labelled nets. Complementarily, Section 2.3 describes sorne
points in the linear-timejbranching-time spectrum for the interleaving case; we define
two failure-type semantics, one taking account of divergence and the other not, and sorne
versions of bisimulation.

In Chapter 3 we study paraUel composition with synchronization of actions from sorne
given set; as described above, we show that the two types of failure semantics we have
introduced are just right for a compositional semantics if we are mainly interested in
deadlock-free or deadlock- and divergence-free systems. In Section 3.3 we study sorne
modifications. One concerns the treatment of infini te system runs, and we touch upon
the problem of fairness. We consider an adaption to safe nets and to the case where we are
interested in liveness (in the Petri net sense) instead of deadlock-freeness. In Section 3.4
we mention the further operators hiding, relabelling, and the choice operator.

If we restrict ourselves to the exchange of nets that are in sorne sense deterministic,
we can improve our results. Not only do we get more favourable decidability results, we
also can show that our simple requirement, that the exchange of equivalent nets preserves

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

6 Introduction

deadlock-freeness, guarantees behaviour preservation in a much st ronger sense; such an
exchange results in a net that is bisimilar to the original net; see also [Eng85]. This is
presented in Chapter 4, where in particular we show how these results can be applied to the
refinement of places. Dually, we initiate the study of a parallel composition operator with
asynchronous communication in Section 4.3; in Section 4.4 we explore which features make
a net deterministic in this context, and show how the behaviour-preserving refinement of
transitions fits into this framework.

Often we cannot expect that the refinement of transitions preserves behaviour, since
the refined net may be able to perform sorne new actions that were not present in the un
refined net. In this case we would like to be able to determine the behaviour of the refined
from that of the unrefined net. Thus equivalent nets, i.e. nets with the same behaviour,
should be refined to nets that are equivalent again; in other words, the equivalence should
be a congruence for action refinement. Such equivalence-preserving action refinements are
studied in Chapter 5 and Chapter 6. In Chapter 5 we introduce a technique for action
refinement and discuss, which refinement nets are suitable in this context. We show that
partial order semantics is useful for defining congruences with respect to action refinement
in Section 5.3, and we introduce a partial order semantics based on interval orders. This
turns out to be just the right semantics in the sense that interval serrriwords can be used to
define three semantics that are fully abstract for action refinement and language-, failure
and failurejdivergence-semantics respectively. We show this in Section 5.4, where we use
interval words, a more or less sequential presentation of interval semiwords. The trans
lation between these two descriptions of system runs is presented in Section 5.5 together
with sorne decidability results.

In Chapter 6 we discuss congruences for action refinement of bisimulation-type. \Vhile
partial orders are immediately useful for linear-time congruences, pomset bisimulation
[BC87], a straightforward combination of partial order semantics and bisimulation, has
turned out to fail for this purpose [BDKP91,GG89b]. History-preserving bisimulation, a
more intricate combination of partial order semantics and bisimulation, is a congruence
[BDKP91,GG89b]; but even this fails unless we restrict the use of internai actions. On the
other hand, ST -bisimulation [GV87], which makes no explicit use of partial orders but is in
fact closely related to interval semiwords, gives a congruence. We show that the ST-idea
can be used to lift in a uniform way bisimulation, pomset bisimulation, history-preserving
bisimulation and the newly introduced partial-word bisimulation to congruences with
respect to action refinement without any restriction on the use of internai actions. At
least in the first three cases we can also show full abstractness results.

For these considerations we restrict ourse Ives to event structures [NPW81], which can
be seen as a special dass of Petri nets, which are in particular acyclic. In many ways, this
makes event structures theoretically easier to work with; but they have the considerable
disadvantage that they have to be infini te in order to de scribe an infini te behaviour.
The corresponding advantage of general Petri nets is somewhat lost when we work with
history-preserving bisimulation. This type of bisimulation gives a detailed account of the
interplay of causality and branching, and it has turned up in various papers - not only in
the context of action refinement; but unlike the usual bisimulation it relates system runs
instead of system states, and thus it necessarily refers to infinitely many objects if we are
concerned with infinite behaviour. In Section 6.4 we give an alternative definition of a

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

Introduction 7

bisimulation for safe nets without internai transitions; in this definition each system state
is described by a marking together with a pre-order on its tokens, where the pre-order
contains information on causality in the token generation. We can show that this OM
bisimulation (OM = ordered marking) gives the same equivalence as history-preserving
bisimulation. As a corollary we obtain that history-preserving bisimulation is decidable.

Chapter 7 looks at partial order semantics from another angle. Continuing a research
initiated in [HRT89], we consider compositionality for nets with capacities. Here we are
not concerned with full abstractness; instead we consider quality criteria of partial order
semantics based on net transformations that are very natural in the presence of capacities.
We give several characterizations and define a new partial order semantics that seems to
be the natural choice in this framework, since it is the minimal semantics satisfying ail
our criteria.

In total, we will present more than fort y different net semantics. As explained above,
it must be left to the reader to choose the right one for a specific application. For example,
if interleaving semantics is ail the reader is interested in, attention can be restricted to
Chapters 3 and 4 after reading appropriate portions of Chapter 2, but then a hierarchical
design by action refinement cannot be accomplished. Conversely, if the reader wants to
know a good reason for partial order semantics or if action refinement is the main operator
of interest, then the reader should turn to Chapters 5 and 6.

In many applications it will turn out that only safe nets are needed. In this case
Chapter 7 can be left out, which is only interesting if we have varying capacities. AIso,
in sorne cases our decidability results are based on the decidability of the reachability
problem, but they become quite simple in the case of safe nets. In this book, emphasis is
put not only on showing that sorne semantics is sufficient to guarantee certain properties
for the modular net construction, but also on the necessity of the distinctions made by the
semantics. These necessity results can fail if the nets under consideration are restricted to
sorne subclass; therefore it is important that we keep an eye on this practically important
class of safe nets, sometimes developing appropriate variations as in Section 3.3.

For applications it may look like a severe restriction that the actions, which label
transitions, are just uninterpreted names; but in princip le we can also deal with arbitrary
data. For example, if we have an action 'input(n)', where n is meant to be a natural
number - although formally 'input(n)' is just a meaningless name -, then we can use
actions 'input(n), ','input(n h', ... , one for each value of n. Of course, in this way the input
of n requires infinitely many transitions, and correspondingly the variable n is modelled
by infinitely many places, one for each value of n. This approach is perfectly sufficient
for theoretical investigations as we present them here. For practical applications, most
often sorne form of high-Ievel net will be more adequate; see e.g. [Gen87,Jen87,Rei90].
High-Ievel nets can be seen as an abbreviation for place/transition-nets, and thus one
can expect that our results carry over; often these place/transition nets are - possibly
infinite - safe nets, which underlines the importance of safe nets. On the other hand,
using high-Ievel nets it is often desirable to work on a symbolic level, and here a lot of
work remains to be do ne in order to transfer our results.

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

