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Preface 

This volume contains the papers which have been accepted for presentation at the 
Fourth International Symposium on Programming Language Implementation and 
Logic Programming (PLILP'92) held in Leuven, Belgium, August 26-28, 1992. The 
Symposium was preceded by three meetings which took place in Orléans, France May 
16-18, 1988, in Linkoping, Sweden, August 20-22, 1990 and in Passau, Germany, 
August 26-28, 1991 (their proceedings were published by Springer-Verlag as Lecture 
Notes in Computer Science, volumes 348, 456, and 528 respectively). 

The aim of the Symposium was to explore new declarative concepts, methods 
and techniques relevant for implementation of ail kinds of programming languages, 
whether algorithmic or declarative. The intention was to gather researchers from 
the fields of algorithmic programming languages as weil as logic, functional and 
object-oriented programming. 

In response to the cali for papers, 82 papers were submitted. The Program Com
mittee met in Leuven on April 27 and selected 29 papers, chosen on the basis oftheir 
scientific quality and relevance to the Symposium. At the Symposium, two invited 
talks were given by Michael Hanus and Patrick Cousot. Several software systems 
were presented, showing new developments in the implementation of programming 
languages and logic programming. 

This volume contains the two invited presentations, the selected papers and ab
stracts of the system demonstrations. 

On behalf of the Pro gram Commit tee the Program Chairmen would like to thank 
all those who submitted papers and the referees who helped to evaluate the papers. 

The support of 

Association for Logic Programming, 
Belgian National Fund for Scientific Research, 
BIM, 
Katholieke U niversiteit Leuven 

is gratefully acknowledged. Bart Demoen, Brigitte Gelders, Gerda Janssens, Bau
douin Le Charlier, Bern Martens, Anne Mulkers and several other members of the 
department provided invaluable help throughout the preparation and organization 
of the Symposium. We also would like to thank Springer-Verlag for their excellent 
cooperation concerning the publication of this volume. 

June 1992 
Leuven 
München 

Maurice Bruynooghe 
Martin Wirsing 
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Improving Control of Logic Programs 
by Using 

Functional Logic Languages 

Michael Hanus 

Max-Planck-Institut für Informatik 
lm Stadtwald 

W-6600 Saarbrücken, Germany 
e-mail: michael@mpi-sb.mpg.de 

Abstract. This paper shows the advantages of amalgamating functional 
and logic programming languages. In comparison with pure functional lan
guages, an amalgamated functionallogic language has more expressive power. 
In comparison with pure logic languages, functional logic languages have a 
better control behaviour. The latter will be shown by presenting methods 
to translate logic programs into a functional logic language with a narrow
ingfrewriting semantics. The translated programs produce the same set of 
answers and have at least the same efliciency as the original programs. But 
in many cases the control behaviour of the translated programs is improved. 
This requires the addition of further knowledge to the programs. We discuss 
methods for this and show the gain in efliciency by means of several examples. 

1 Introduction 

Many proposais have been made to integrate functional and logic programming lan
guages during the last years (see [3, 11] for surveys). Recently, these proposais be
came relevant for practical applications because efficient implementations have been 
developed [5, 8, 19,33,35,48]. This raises the natural question for the advantages of 
such amalgamated languages. In comparison with pure functional languages, func
tionallogic languages have more expressive power due to the availability of features 
like function inversion, partial data structures and logic variables [42]. In compari
son with pure logic languages, functionallogic languages allow to specify functional 
dependencies and to use nested functional expressions. Although this improves the 
readability of logic programs, it is not clear whether this is only a minor syntactic 
improvement (which can be added to logic languages by a simple preprocessor [37]) 
or there is a genuine advantage of functionallogic languages compared to pure logic 
languages. In this paper we show that the latter is true: functionallogic languages 
have a better operational behaviour than logic languages. We show this by presenting 
methods to translate logic programs into a functionallogic language. These methods 
ensure that the translated programs pro duce the same set of answers and have at 
least the same efficiency as the original programs. But in many cases the translation 
improves the control behaviour of logic programs which will be demonstrated by 
sever al examples. 
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sort(L,M) :- perm(L,M), ord(lI). 

perm(O, []). 

2 

perme [E 1 L], [FIM]) : - del(F, [E! L] ,N), perm(N ,M) . 

delCE, [E1L] ,L). 
del(E,[F!L],[F!M) delCE,L,M). 

arder]). 
ord( [E]). 
ord([E,FIL]) :- le(E,F), ord([FIL]). 

leCO,E). 
le(s(E),s(F» :- le(E,F). 

Figure 1. Permutation sort (natural numbers are represented by s-terms) 

Logic programming allows the specification of problems at an abstract level and 
permits the execution of the specifications. However, these specifications are often 
very slowly executed because a lot of search is performed under the standard Prolog 
computation ruie. For instance, Figure 1 specifies the notion of a sorted list (cf. 
[44], p. 55): a list M is a sorted version of a list L if M is a permutation of Land 
aIl elements of li are in ascending order. "Ve can use this Prolog program to sort 
the list [4,3,2,1] by solving the query?- sorte [4,3,2, 1] ,5). But this funs very 
inefficiently under the standard computation rule because aIl permutations must be 
enumerated and tested in order to solve this goal. 

Therefore sever aI proposaIs have been made in order to improve the control 
of Prolog programs. Naish [36] has extended the standard computation model of 
Prolog by a coroutining mechanism. He allows the addition of "wait" declarations to 
predicates. Such declarations have the effect that the resolution of a literaI is delayed 
until the arguments are sufficiently instantiated. If a variable of a delayed literaI is 
bound to a non-variable term, this literaI is woken and executed in the next step if 
it is now sufficiently instantiated. In the permutation sort example, the programmer 
can add a wait declaration to the predicate ord and change the ordering in the first 
dause into 

sort(L,M) :- ord(M), perm(L,M). 

Now the goal 1- sort([3,2,1] ,S) is executed in the following way: After the ap
plication of the first clause to this goal the literaI ord(S) is delayed and the literaI 
perme [3,2,1] ,5) will be executed. If S is bound to the first part of a permutation 
of (3,2,1] (i.e., a list with two elements and a variable at the tail), then ord(S) is 
activated. If the first two elements of S are in the wrong order, then the computation 
fails and another permutation îs tried, otherwise ord is delayed again until the next 
part of the permutation is generated. Thus with this modification not ail permu
tations are completely computed and therefore the execution time is better than 
in the naive approach. Naish has also presented an algorithm which generates the 
wait declarations from a given program and transforms the prograrn by reordering 
the goals in a clause. Although this approach seems to be attractive, it has sorne 
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3 

problems. For instance, the generation of wait declarations is based on heuristics 
and therefore it is unclear whether these heuristics are generally successful. More
over, it is possible that the annotated program flounders, i.e., ail goals are delayed 
which is considered as a run-time error. Hence completeness of SLD-resolution can 
be lost when transforming a logic program into a program with wait declarations 
(see example at the end of Section 3.3 or the goodpath example in [46]). 

Another approach to improve control has been developed by Bruynooghe's group 
[7]. They try to avoid the overhead of coroutining execution by transforming a logic 
program with coroutining into a logic program with an equivalent behaviour exe
cuted under the standard computation rule. The transformation is done in several 
steps. In the first step a symbolic trace tree of a goal is created where the user has 
to decide which literai is selected and whether a literai is completely executed or 
only a single resolution step is made, i.e., the user must supply the system with 
a good computation mie. If a goal in the trace tree is a renaming of a goal in an 
ancestor node, an arc from this goal to the ancestor node is inserted. This results in 
a symbolic trace graph which is then reduced and in the last step translated into a 
logic program simulating the symbolic trace under the standard computation rule. 
The crucial point in this approach is to find a good computation rule for the program 
with respect to the initial goal. In a recent paper [46] a method for the automated 
generation of an efficient computation rule is presented. The method is based on 
a global analysis of the program by abstract interpretation techniques in order to 
derive the necessary information. Since the arguments for choosing a "good" com
putation rule are heuristics, it is unclear whether the transformed programs are in 
any case more efficient than the original ones. Another problem is due to the fact 
that their method uses a given cali pattern for the initial goal. Therefore different 
versions of the program are generated for different cali modes of the goal. 

In this paper we propose a much simpler method to improve control of logic 
programs. This method ensures that the new programs have at least the same effi
ciency as the original ones. But for a large class of programs ("generate-and-test" 
programs like permutation sort) we ob tain a better efficiency similar to other ap
proaches to improve control. The basic idea is to use a functional logic language 
and to translate logic programs into functional programs (without considering the 
initial goal). The motivation for the integration of functional and logic program
ming languages is to combine the advantages of both programming paradigms in 
one language: the possibility of solving predicates and equations between terms to
gether with the efficient reduction paradigm of functional languages. A lot of the 
proposed amalgamations offunctional and logic languages are based on Horn clause 
logic with equality [40] where the user can define predicates by Horn clauses and 
functions by (conditional) equations. Predicates are often omitted because they can 
be represented as Boolean functions. A complete operational semantics is based on 
the n'arrowing rule [14, 29, 30]: narrowing combines unification of logic languages 
with rewriting of functionallanguages, i.e., a narrowing step consists of the unifica
tion of a subterm of the goal with the left-hand side of an equation, replacing this 
subterm by the right-hand side of the equation and applying the unifier to the whole 
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4 

goal. Sinee we have to take into account aIl subterms of a goal in the next narrowing 
step, this naïve strategy produces a large search space and is less efficient than SLD
resolution (SLD stands for selecting one literaI in the next resolution step). Also the 
advantage of functionallanguages, namely the deterministic reduction principle, is 
lost by this naive approach. 

Therefore a lot of research has been done to improve the narrowing strategy 
without loosing completeness. Hullot [29] has shown that the restriction to basic 
subterms, Le., subterms which are not created during unification, is complete. fri
bourg [15] has proved that the restriction to subterms at innermost positions is also 
complete provided that an functions are reducible on aIl ground terms. Finally, Hëll
dobler [28) has proved completeness of the combination of basic and innermost nar
rowing where a so-called innermost reflection rule must be added for partially defined 
functions. "But innermost basic narrowing is not better than SLD-resolution since it 
has been shown that innermost basic narrowing corresponds to SLD-resolution if a 
functional program is translated into a logic program by flattening [6]. On the other 
hand, we can also translate alogie program into a functional one without loosing 
efficiency if we use the innermost basic narrowing strategy. But now we are able to 
improve the execution by simplifying the goal by deterministic rewriting before a 
narrowing step is applied (rewriting is similar to reduction in functionallanguages 
with the difference that rewriting is also applied to terms containing variables). 
The simplification phase cuts down the search space without loosing completeness 
[28, 39]. 

We will see in the next sections that the operational behaviour ofinnermost basic 
narrowing combined with simplification is similar to SLD-reso\ution with a particular 
dynamic control rule. Hence we get an improvement in the execution comparable to 
previous approaches [7, 36J but with the following advantages: 

- The translation technique from logic programs into functionallogic programs is 
simple. 

- It is ensured that the translated programs have at least the same efficiency as 
the original ones. For many programs the efficiency is much better. 

- It is ensured that we do not loose completeness: there exists an answer W.f.t. the 
translated program iff there exists an answer w.r.t. the original program. 

The !ast remark is only true if we use a fair computation strategy. If we use a 
backtracking implementation of SLD-resolution as in Prolog, the completeness may 
be lost because of infinite computations. However, infinite paths in the search tree 
can be eut by the simplification pro cess [15], i.e., it is also possible that we obtain 
an answer from the functionallogic program where the originallogic program does 
not terminate. 

These theoretical considerations are only relevant if there is an implementation 
of the functional logic language which has the same efficiency as current Prolog 
implementations. Fortunately, this is the case. In [19, 21, 24] it has been shown 
that it is possible to implement a functional logic language very efficiently by ex
tending the currently known Prolog implementation techniques [47]. The language 
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5 

ALF ("Algebraic Logic Functional language") is based on the operational seman
tics sketched above. Innermost basic narrowing and simplification is implemented 
without overhead in comparison to Prolog's computation strategy, i.e., functional 
programs are executed with the same efficiency as their relational equivalents by 
SLD-resolution (see [21] for benchmarks). Therefore it is justified to improve the 
control of logic programs by translation into a functionallogic language. 

In the next section we give a precise description of ALF's operational semantics 
and in Section 3 we present our approach to improve control of logic programs in 
more detail. 

2 Operational semantics of ALF 

As mentioned in the previous section, we want to improve the control behaviour of 
logic programs by translating them into a functional logic language. We have also 
mentioned that in order to compete with SLD-resolution we have to use a functional 
logic language with a refined operational semantics, namely innermost basic nar
rowing and simplification. Hence the target language of the translation pro cess is 
the language ALF [19, 21] which is based on this semantics. ALF has more features 
than actually used in this paper, e.g., a module system with parameterization, a 
type system based on many-sorted logic, predicat es which are resolved by resolution 
etc. (see [25] for details). In the following we outline the operational semantics of 
ALF in order to understand the translation scheme presented in the next sections. 

ALF is a constructor-based language, i.e., the user must specify for each symbol 
whether it is a constructor or a defined function. Constructors must not be the 
outermost symbol of the left-hand side of a defining equation, i.e., constructor terms 
are always irreducible. Hence constructors are used to build data types, and defined 
functions are operations on these data types (similarly to functionallanguages like 
ML [27] or Miranda [45]). The distinction between constructors and defined function 
symbols is necessary to define the notion of an innermost position [15]. 

An ALF program consists of a set of (conditional) equations which are used 
in two ways. In a narrowing step an equation is applied to compute a solution of 
a goal (i.e., variables in the goal may be bound to terms), whereas in a rewrite 
step an equation is applied to simplifya goal (i.e., without binding goal variables). 
Therefore we distinguish between narrowing rules (equations applied in narrowing 
steps) and rewrite rules (equations applied in rewrite steps). Usually, ail conditional 
equations of an ALF program are used as narrowing and rewrite rules, but it is 
also possible to specify rules which are only used for rewriting. Typically, these 
rules are inductive axioms or CWA-valid axioms (see below). The application of 
such rules for simplification can reduce the search space and is justified if we are 
interested in ground-valid answers [15, 39] (i.e., answers which are valid for each 
ground substitution applied to it). 

Figure 2 shows an ALF module to sort a list of naturals. N aturals are represented 
by the constructors 0 and s, true and false are the constructors of the data type 
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