
M. Bruynooghe M. Wirsing (Eds.) 1 ~"l.
A_IOv'

GCe;·J.. .

Programming Language
Implementation
and Logic Programming

4th International Symposium, PLILP '92
Leuven, Belgium, August 26-28, 1992
Proceedings

Springer -Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Series Editors

Gerhard Goos
Universitiit Karlsruhe
Postfach 69 80
Vincenz-Pliessnitz-Stral3e 1
W-7500 Karlsruhe, FRG

Volume Editors

Mamice Bruynooghe

Juris Bartmanis
Department of Computer Science
Cornell University
5149 Upson Hall
Ithaca, NY 14853, USA

Catholic University of Leuven, Dept. of Computer Science
Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

Martin Wirsing
University of Munich, Institute of Computer Science
Leopoldstr, Il B, W-8000 Munich 40, FRG

CR Subject Classification (1991): P.4.1-2, D.3.!, D.3.4, P.3.3, I.2.3

ISBN 3-540-55844-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55844-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Al! rights are reserved, whether the who le or part of
the material is concerned, specifically the rights of translation, replinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of trus publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in ils
CUITent version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Plinted on acid-free paper

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Preface

This volume contains the papers which have been accepted for presentation at the
Fourth International Symposium on Programming Language Implementation and
Logic Programming (PLILP'92) held in Leuven, Belgium, August 26-28, 1992. The
Symposium was preceded by three meetings which took place in Orléans, France May
16-18, 1988, in Linkoping, Sweden, August 20-22, 1990 and in Passau, Germany,
August 26-28, 1991 (their proceedings were published by Springer-Verlag as Lecture
Notes in Computer Science, volumes 348, 456, and 528 respectively).

The aim of the Symposium was to explore new declarative concepts, methods
and techniques relevant for implementation of ail kinds of programming languages,
whether algorithmic or declarative. The intention was to gather researchers from
the fields of algorithmic programming languages as weil as logic, functional and
object-oriented programming.

In response to the cali for papers, 82 papers were submitted. The Program Com
mittee met in Leuven on April 27 and selected 29 papers, chosen on the basis oftheir
scientific quality and relevance to the Symposium. At the Symposium, two invited
talks were given by Michael Hanus and Patrick Cousot. Several software systems
were presented, showing new developments in the implementation of programming
languages and logic programming.

This volume contains the two invited presentations, the selected papers and ab
stracts of the system demonstrations.

On behalf of the Pro gram Commit tee the Program Chairmen would like to thank
all those who submitted papers and the referees who helped to evaluate the papers.

The support of

Association for Logic Programming,
Belgian National Fund for Scientific Research,
BIM,
Katholieke U niversiteit Leuven

is gratefully acknowledged. Bart Demoen, Brigitte Gelders, Gerda Janssens, Bau
douin Le Charlier, Bern Martens, Anne Mulkers and several other members of the
department provided invaluable help throughout the preparation and organization
of the Symposium. We also would like to thank Springer-Verlag for their excellent
cooperation concerning the publication of this volume.

June 1992
Leuven
München

Maurice Bruynooghe
Martin Wirsing

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Conference Chairmen

Maurice Bruynooghe, K.U. Leuven (Belgium)
Martin Wirsing, Univ. of München (Germany)

Program Committee

Maurice Bruynooghe, K.U. Leuven (Belgium)
John Darlington, Imperial College, London (UK)
Saumya Debray, Univ-. of Arizona, Tucson (USA)
Wlodek Drabent, Linkoping Univ. (Sweden) and Warsaw Univ. (Poland)
Gérard Ferrand, Université d'Orléans (France)
Stefan Jiihnichen, TU Berlin (Germany)
Bharat Jayaraman, State Univ. of New York, Buffalo (USA)
Claude Kirchner, INRIA Lorraine & CRIN, Nancy (France)
Feliks Kluzniak, Warsaw Univ. (Poland)
Heikki Mannila, Univ. of Helsinki (Finland)
Torben Mogensen, Univ. of Copenhagen (Denmark)
Alan Mycroft, Cambridge (UK)
Lee Naish, Univ. of Melbourne (Australia)
Jaan Penjam, Estonian Academy of Science, Tallinn (Estonia)
Jiro Tanaka, Fujitsi Laboratories, Tokyo (Japan)
Franco Turini, U niversita di Pisa (Italy)
Andrei Voronkov, Novosibirsk (Russia) and ECRC, München (Germany)
Reinhard Wilhelm, Univ. des Saarlandes, Saarbrücken (Germany)
Martin Wirsing, Univ. of München (Germany)

Organizing Committee

Maurice Bruynooghe, K.U. Leuven
Bart Demoen, K.U. Leuven
Gerda Janssens, K.U. Leuven (organizing chairman)
Baudouin Le Charlier, F.U.N.D.P. (Namur)
Bern Martens, K.U. Leuven
Anne Mulkers, K.U. Leuven

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VII

List of Referees

Many other referees helped the Pro gram Committee in evaluating papers. Their as
sistance is gratefully acknowledged.

M.AIt R. Giacobazzi A. Mück
N. Andersen J. Grosch F. Nickl
J .-M. Andreoli Y. Guo U. Nilsson
M. Anlauff G. Gupta A.Ohsuga
F. Baiardi J. Hannan J. Paakki
A. Bansal F. Henglein C. Palamidessi
R. Barbuti A.V. Hense D. Parigot
F. Barthélemy L. Hermosilla R. Paterson
R.N. Bol A. Herold D. Pedreschi
S. Bonnier W. Hesse H. Perkmann
D. Boulanger K. Hirano H. Peterreins
A. Brogi K. Hirata S. Prestwich
M.V. Cengarle J .-M. Huffien M. Raber
M.M.T. Chakravarty J. Hughes I. Ramakrisnan
M. Codish H. HuBmann B. Reus
P. Codognet N. Ichiyoshi O. Ridoux
P. Dague J .-P. Jacquot M. Rittri
B. Demoen D. Jana H. Rohtla
A. De Niel G. Janssens K.H. Rose
P. Deransart P. Kilpeliiinen G. Sander
D. De Schreye H. Kirchner P.-Y. Schoebbens
R. Dietrich F. Klay K. Sieber
E. Domenjoud E. Klein M. Simons
M. Dorochevsky M. Koshimura R. Stabl
H. Emmelmann U. Lechner H. Sugano
C. Fecht H.C.R. Lock A. Takeuchi
C. Ferdinand M. Maeda T. Tammet
U. Fraus J. Maluszynski H. Tsuda
L. Fribourg P. Mancarella H. Ueda
M. Fujita R. Manthey E. Ukkonen
S. Gastinger 1. Maranget P. Van Hentenryck
M. Gengenbach B. Martens M. Vittek
U. Geske M. Meier M. Weber

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Table of Contents

Invited Lecture: Improving Control of Logic Programs by Using Functional
Logic Languages
M. Hanv.s .. 1

Parallelism

Independent AND-ParaUel Implementation of Narrowing
H. K'lJ.chen, J.J. Moreno-Navarro, and M. V. Hermenegildo 24

Binding Techniques and Garbage Collection for OR-ParaUel CLP Systems
M. Dorochevsky and A. Véron ... 39

Static Analysis

Path Analysis for Lazy Data Structures
C.K. Gomard and P. Sestoft .. 54

Why the Occur-Check is Not a Problem
K.R. Apt and A. Pellegrini .. 69

Implementation 1

Incrementai Evaluation of N atural Semantics Specifications
1. Attali, J. Chazarain, and S. Gilette ... 87

Subsumption-Oriented Push-Down Automata
F. Barthélemy and E. Villemonte de la Clergerie 100

Unlimp, Uniqueness as a Leitmotiv for Implementation
S. Kahrs ... 115

Attribute Grammars

U sing Cached Functions and Constructors for Incrementai Attribute
Evaluation
M. Pennings, D. Swierstra, and H. Vogt 130

Strictness Analysis for Attribute Grammars
M. Rosendahl .. 145

Checking and Debugging of Two-Level Grammars
S. Sai di and J.-F. Boulicaut .. 158

Transformation/ S ynthesis

On Safe Folding
A. Bossi, N. Cocco, and S. Etalle .. 172

Unfold/Fold Transformations Preserving Termination Properties
T. Amtoft ... 187

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

x

A Technique for Transforming Logic Programs by Fold-Unfold
Transformations
F. Alexandre 202

FOLON: An Environment for Declarative Construction of Logic Programs
J. Henrard and B. Le Charlier ... 217

Implementation II

A Complete Indexing Scheme for WAM-Based Abstract Machines
W. Hans ... 232

Fast Prolog with a VAM1p based Prolog Compiler
A. Krall and T. Berger .. 245

Metastructures vs. Attributed Variables in the Context of Extensible
Unification
C. Holzbaur .. , , 260

Invited Lecture: Comparing the Galois Connection and WideningjNarrowing
Approaches to Abstract Interpretation
P. Causat and R. Cousat .. 269

Abstract Interpretation

Derivation of Linear Size Relations by Abstract Interpretation
K. Verschaetse and D. De Schreye ... 296

Generic Abstract Interpretation Algorithms for Pralog: Two Optimization
Techniques and Their Experimental Evaluation
V. Englebert, B. Le Charlier, D. Roland, and P. Van Hentenryck 311

Implementation III

A Bottom-Up Interpreter for a Higher-Order Logic Programming Language
A. Hui Bon Hoa ... 326

CAM EL: An Extension of the Categorical Abstract Machine ta Compile
FunctionaljLogic Programs
A. Mick ... 341

On the Interaction of Lazy Evaluation and Backtracking
W. Hans, R. Loogen, and S. Winkler ... 355

Debugging

Interprocedural Dynamic Slicing
M. Kamkar, N. Shahmehr-i, and P. Fritzson 370

Algorithmic Debugging of Lazy Functional Languages
H. Nilsson and P. Fritzson ... 385

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

XI

A General Trace Query Mechanism Based on Prolog
M. Ducassé .. 400

Integration

Fully Declarative Logic Programming
J.A. Plaza ... 415

Our LIPS Are Sealed: Interfacing Functional and Logic Programming
Systems
G. Lindstrom, J. Maluszynski, and T. Ogi 428

Analyses of Inconsistency for IncrementaI Equational Logic Programming
M. Alpuente, M. Falaschi, and F. Manzo 443

1/0 Trees and Interactive Lazy Functional Programming
S.A. Rebelsky .. 458

System Demonstrations

UCG-E: An Equational Logic Programming System
L.H. Hamel .. 473

A Relational Programming System with Inferred Representations
D. Cattrall and C. Runciman .. 475

An Implementation of Action Semantics (Summary)
H. Moura .. 477

BinProlog: a Continuation Passing Style Prolog Engine
P. Tarau .. .479

LaToKi: A Language Toolkit for Bottom-Up Evaluation of Functional
Programs
P. Thiemann .. 481

Implementing Higher-Order Functions in an Algebraic Specification
Language with Narrowing .
B. Reus483

Implementing Attribute Grammars by Computational Models
J. Vilo ... 485

ProQuery: Logical Access to an OODB
C.M. Li and P. Y. Gloess .. .487

Inference of Inheritance Relationships from Prolog Programs: a System
Developed with PrologIII
C. Solnon and M. Rueher .. 489

CLP(PB), A Meta-Interpreter in CLP(R)
P. Barth ... 491

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Improving Control of Logic Programs
by Using

Functional Logic Languages

Michael Hanus

Max-Planck-Institut für Informatik
lm Stadtwald

W-6600 Saarbrücken, Germany
e-mail: michael@mpi-sb.mpg.de

Abstract. This paper shows the advantages of amalgamating functional
and logic programming languages. In comparison with pure functional lan
guages, an amalgamated functionallogic language has more expressive power.
In comparison with pure logic languages, functional logic languages have a
better control behaviour. The latter will be shown by presenting methods
to translate logic programs into a functional logic language with a narrow
ingfrewriting semantics. The translated programs produce the same set of
answers and have at least the same efliciency as the original programs. But
in many cases the control behaviour of the translated programs is improved.
This requires the addition of further knowledge to the programs. We discuss
methods for this and show the gain in efliciency by means of several examples.

1 Introduction

Many proposais have been made to integrate functional and logic programming lan
guages during the last years (see [3, 11] for surveys). Recently, these proposais be
came relevant for practical applications because efficient implementations have been
developed [5, 8, 19,33,35,48]. This raises the natural question for the advantages of
such amalgamated languages. In comparison with pure functional languages, func
tionallogic languages have more expressive power due to the availability of features
like function inversion, partial data structures and logic variables [42]. In compari
son with pure logic languages, functionallogic languages allow to specify functional
dependencies and to use nested functional expressions. Although this improves the
readability of logic programs, it is not clear whether this is only a minor syntactic
improvement (which can be added to logic languages by a simple preprocessor [37])
or there is a genuine advantage of functionallogic languages compared to pure logic
languages. In this paper we show that the latter is true: functionallogic languages
have a better operational behaviour than logic languages. We show this by presenting
methods to translate logic programs into a functionallogic language. These methods
ensure that the translated programs pro duce the same set of answers and have at
least the same efficiency as the original programs. But in many cases the translation
improves the control behaviour of logic programs which will be demonstrated by
sever al examples.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

sort(L,M) :- perm(L,M), ord(lI).

perm(O, []).

2

perme [E 1 L], [FIM]) : - del(F, [E! L] ,N), perm(N ,M) .

delCE, [E1L] ,L).
del(E,[F!L],[F!M) delCE,L,M).

arder]).
ord([E]).
ord([E,FIL]) :- le(E,F), ord([FIL]).

leCO,E).
le(s(E),s(F» :- le(E,F).

Figure 1. Permutation sort (natural numbers are represented by s-terms)

Logic programming allows the specification of problems at an abstract level and
permits the execution of the specifications. However, these specifications are often
very slowly executed because a lot of search is performed under the standard Prolog
computation ruie. For instance, Figure 1 specifies the notion of a sorted list (cf.
[44], p. 55): a list M is a sorted version of a list L if M is a permutation of Land
aIl elements of li are in ascending order. "Ve can use this Prolog program to sort
the list [4,3,2,1] by solving the query?- sorte [4,3,2, 1] ,5). But this funs very
inefficiently under the standard computation rule because aIl permutations must be
enumerated and tested in order to solve this goal.

Therefore sever aI proposaIs have been made in order to improve the control
of Prolog programs. Naish [36] has extended the standard computation model of
Prolog by a coroutining mechanism. He allows the addition of "wait" declarations to
predicates. Such declarations have the effect that the resolution of a literaI is delayed
until the arguments are sufficiently instantiated. If a variable of a delayed literaI is
bound to a non-variable term, this literaI is woken and executed in the next step if
it is now sufficiently instantiated. In the permutation sort example, the programmer
can add a wait declaration to the predicate ord and change the ordering in the first
dause into

sort(L,M) :- ord(M), perm(L,M).

Now the goal 1- sort([3,2,1] ,S) is executed in the following way: After the ap
plication of the first clause to this goal the literaI ord(S) is delayed and the literaI
perme [3,2,1] ,5) will be executed. If S is bound to the first part of a permutation
of (3,2,1] (i.e., a list with two elements and a variable at the tail), then ord(S) is
activated. If the first two elements of S are in the wrong order, then the computation
fails and another permutation îs tried, otherwise ord is delayed again until the next
part of the permutation is generated. Thus with this modification not ail permu
tations are completely computed and therefore the execution time is better than
in the naive approach. Naish has also presented an algorithm which generates the
wait declarations from a given program and transforms the prograrn by reordering
the goals in a clause. Although this approach seems to be attractive, it has sorne

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

3

problems. For instance, the generation of wait declarations is based on heuristics
and therefore it is unclear whether these heuristics are generally successful. More
over, it is possible that the annotated program flounders, i.e., ail goals are delayed
which is considered as a run-time error. Hence completeness of SLD-resolution can
be lost when transforming a logic program into a program with wait declarations
(see example at the end of Section 3.3 or the goodpath example in [46]).

Another approach to improve control has been developed by Bruynooghe's group
[7]. They try to avoid the overhead of coroutining execution by transforming a logic
program with coroutining into a logic program with an equivalent behaviour exe
cuted under the standard computation rule. The transformation is done in several
steps. In the first step a symbolic trace tree of a goal is created where the user has
to decide which literai is selected and whether a literai is completely executed or
only a single resolution step is made, i.e., the user must supply the system with
a good computation mie. If a goal in the trace tree is a renaming of a goal in an
ancestor node, an arc from this goal to the ancestor node is inserted. This results in
a symbolic trace graph which is then reduced and in the last step translated into a
logic program simulating the symbolic trace under the standard computation rule.
The crucial point in this approach is to find a good computation rule for the program
with respect to the initial goal. In a recent paper [46] a method for the automated
generation of an efficient computation rule is presented. The method is based on
a global analysis of the program by abstract interpretation techniques in order to
derive the necessary information. Since the arguments for choosing a "good" com
putation rule are heuristics, it is unclear whether the transformed programs are in
any case more efficient than the original ones. Another problem is due to the fact
that their method uses a given cali pattern for the initial goal. Therefore different
versions of the program are generated for different cali modes of the goal.

In this paper we propose a much simpler method to improve control of logic
programs. This method ensures that the new programs have at least the same effi
ciency as the original ones. But for a large class of programs ("generate-and-test"
programs like permutation sort) we ob tain a better efficiency similar to other ap
proaches to improve control. The basic idea is to use a functional logic language
and to translate logic programs into functional programs (without considering the
initial goal). The motivation for the integration of functional and logic program
ming languages is to combine the advantages of both programming paradigms in
one language: the possibility of solving predicates and equations between terms to
gether with the efficient reduction paradigm of functional languages. A lot of the
proposed amalgamations offunctional and logic languages are based on Horn clause
logic with equality [40] where the user can define predicates by Horn clauses and
functions by (conditional) equations. Predicates are often omitted because they can
be represented as Boolean functions. A complete operational semantics is based on
the n'arrowing rule [14, 29, 30]: narrowing combines unification of logic languages
with rewriting of functionallanguages, i.e., a narrowing step consists of the unifica
tion of a subterm of the goal with the left-hand side of an equation, replacing this
subterm by the right-hand side of the equation and applying the unifier to the whole

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

goal. Sinee we have to take into account aIl subterms of a goal in the next narrowing
step, this naïve strategy produces a large search space and is less efficient than SLD
resolution (SLD stands for selecting one literaI in the next resolution step). Also the
advantage of functionallanguages, namely the deterministic reduction principle, is
lost by this naive approach.

Therefore a lot of research has been done to improve the narrowing strategy
without loosing completeness. Hullot [29] has shown that the restriction to basic
subterms, Le., subterms which are not created during unification, is complete. fri
bourg [15] has proved that the restriction to subterms at innermost positions is also
complete provided that an functions are reducible on aIl ground terms. Finally, Hëll
dobler [28) has proved completeness of the combination of basic and innermost nar
rowing where a so-called innermost reflection rule must be added for partially defined
functions. "But innermost basic narrowing is not better than SLD-resolution since it
has been shown that innermost basic narrowing corresponds to SLD-resolution if a
functional program is translated into a logic program by flattening [6]. On the other
hand, we can also translate alogie program into a functional one without loosing
efficiency if we use the innermost basic narrowing strategy. But now we are able to
improve the execution by simplifying the goal by deterministic rewriting before a
narrowing step is applied (rewriting is similar to reduction in functionallanguages
with the difference that rewriting is also applied to terms containing variables).
The simplification phase cuts down the search space without loosing completeness
[28, 39].

We will see in the next sections that the operational behaviour ofinnermost basic
narrowing combined with simplification is similar to SLD-reso\ution with a particular
dynamic control rule. Hence we get an improvement in the execution comparable to
previous approaches [7, 36J but with the following advantages:

- The translation technique from logic programs into functionallogic programs is
simple.

- It is ensured that the translated programs have at least the same efficiency as
the original ones. For many programs the efficiency is much better.

- It is ensured that we do not loose completeness: there exists an answer W.f.t. the
translated program iff there exists an answer w.r.t. the original program.

The !ast remark is only true if we use a fair computation strategy. If we use a
backtracking implementation of SLD-resolution as in Prolog, the completeness may
be lost because of infinite computations. However, infinite paths in the search tree
can be eut by the simplification pro cess [15], i.e., it is also possible that we obtain
an answer from the functionallogic program where the originallogic program does
not terminate.

These theoretical considerations are only relevant if there is an implementation
of the functional logic language which has the same efficiency as current Prolog
implementations. Fortunately, this is the case. In [19, 21, 24] it has been shown
that it is possible to implement a functional logic language very efficiently by ex
tending the currently known Prolog implementation techniques [47]. The language

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

ALF ("Algebraic Logic Functional language") is based on the operational seman
tics sketched above. Innermost basic narrowing and simplification is implemented
without overhead in comparison to Prolog's computation strategy, i.e., functional
programs are executed with the same efficiency as their relational equivalents by
SLD-resolution (see [21] for benchmarks). Therefore it is justified to improve the
control of logic programs by translation into a functionallogic language.

In the next section we give a precise description of ALF's operational semantics
and in Section 3 we present our approach to improve control of logic programs in
more detail.

2 Operational semantics of ALF

As mentioned in the previous section, we want to improve the control behaviour of
logic programs by translating them into a functional logic language. We have also
mentioned that in order to compete with SLD-resolution we have to use a functional
logic language with a refined operational semantics, namely innermost basic nar
rowing and simplification. Hence the target language of the translation pro cess is
the language ALF [19, 21] which is based on this semantics. ALF has more features
than actually used in this paper, e.g., a module system with parameterization, a
type system based on many-sorted logic, predicat es which are resolved by resolution
etc. (see [25] for details). In the following we outline the operational semantics of
ALF in order to understand the translation scheme presented in the next sections.

ALF is a constructor-based language, i.e., the user must specify for each symbol
whether it is a constructor or a defined function. Constructors must not be the
outermost symbol of the left-hand side of a defining equation, i.e., constructor terms
are always irreducible. Hence constructors are used to build data types, and defined
functions are operations on these data types (similarly to functionallanguages like
ML [27] or Miranda [45]). The distinction between constructors and defined function
symbols is necessary to define the notion of an innermost position [15].

An ALF program consists of a set of (conditional) equations which are used
in two ways. In a narrowing step an equation is applied to compute a solution of
a goal (i.e., variables in the goal may be bound to terms), whereas in a rewrite
step an equation is applied to simplifya goal (i.e., without binding goal variables).
Therefore we distinguish between narrowing rules (equations applied in narrowing
steps) and rewrite rules (equations applied in rewrite steps). Usually, ail conditional
equations of an ALF program are used as narrowing and rewrite rules, but it is
also possible to specify rules which are only used for rewriting. Typically, these
rules are inductive axioms or CWA-valid axioms (see below). The application of
such rules for simplification can reduce the search space and is justified if we are
interested in ground-valid answers [15, 39] (i.e., answers which are valid for each
ground substitution applied to it).

Figure 2 shows an ALF module to sort a list of naturals. N aturals are represented
by the constructors 0 and s, true and false are the constructors of the data type

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

