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Preface

This volume contains the papers which have been accepted for presentation at the
Fourth International Symposium on Programming Language Implementation and
Logic Programming (PLILP’92) held in Leuven, Belgium, August 26-28, 1992. The
Symposium was preceded by three meetings which took place in Orléans, France May
16-18, 1988, in Linképing, Sweden, August 20-22, 1990 and in Passau, Germany,
August 26-28, 1991 (their proceedings were published by Springer-Verlag as Lecture
Notes in Computer Science, volumes 348, 456, and 528 respectively).

The aim of the Symposium was to explore new declarative concepts, methods
and techniques relevant for implementation of all kinds of programming languages,
whether algorithmic or declarative. The intention was to gather researchers from
the fields of algorithmic programming languages as well as logic, functional and
object-oriented programming.

In response to the call for papers, 82 papers were submitted. The Program Com-
mittee met in Leuven on April 27 and selected 29 papers, chosen on the basis of their
scientific quality and relevance to the Symposium. At the Symposium, two invited
talks were given by Michael Hanus and Patrick Cousot. Several software systems
were presented, showing new developments in the implementation of programming
languages and logic programming,.

This volume contains the two invited presentations, the selected papers and ab-
stracts of the system demonstrations.

On behalf of the Program Committee the Program Chairmen would like to thank
all those who submitted papers and the referees who helped to evaluate the papers.

‘The support of

Association for Logic Programming,
Belgian National Fund fer Scientific Research,
BIM,

Katholieke Universiteit Leuven

is gratefully acknowledged. Bart Demoen, Brigitte Gelders, Gerda Janssens, Bau-
douin Le Charlier, Bern Martens, Anne Mulkers and several other members of the
department provided invaluable help throughout the preparation and organization
of the Symposium. We also would like to thank Springer-Verlag for their excellent
cooperation concerning the publication of this volume.

June 1992
Leuven Maurice Bruynooghe
Minchen Martin Wirsing
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Improving Control of Logic Programs
by Using
Functional Logic Languages

Michael Hanus

Max-Planck-Institut fiir Informatik
Im Stadtwald
W-6600 Saarbricken, Germany
e-mail: michael@mpi-sh, mpg.de

Abstract. This paper shows the advantages of amalgamating functional
and logic programining languages. In comparison with pure functional lan-
guages, an amalgamated functional logic language has more expressive power,
In comparison with pure logic langnages, functional logic languages have a
better control behaviour. The latter will be shown by presemiing methods
to translate logic programs into a functional logic language with a narrow-
ing/rewriting semantics. The translated programs produce the samec set of
answers and have at least the same efficiency as the original programs. But
in many cases the control behaviour of the translated programs is improved.
This requires the addition of further knowledge to the programs. We discuss
methods for this and show the gain in efficiency by means of several examples.

1 Introduction

Mauy proposals have been made to integrate functional and logic programming lan-
guages during the last years (see [3, 11] for surveys). Recently, these proposals be-
came relevant for practical applications because efficient implementations have been
developed [5, §, 19, 33, 35, 48]. This raises the natural question for the advantages of
such amalgamated languages. In comparison with pure functional languages, func-
tional logic languages have more expressive power due to the availabilily of features
like function inversion, partial data structures and logic variables [42]. In compari-
son with pure logic languages, functional logic languages allow to specify functional
dependencies and to use nested functional expressions. Although this improves the
readability of logic programs, it is not clear whether this is only a minor syntactic
improvement {which can be added to logic languages by a simple preprocessor [37]}
or there is a genuine advantage of functional logic languages compared to pure logic
languages. In this paper we show that the latter is true: functional logic languages
have a better operational behaviour than logic languages. We show this by presenting
methods to translate logic programs into a functional logic language. These methods
ensurc that the translated programs produce the same set of answers and have at
least the same efficiency as the original programs. But in many cases the iranslation
improves the control behaviour of logic programs which will be demonstrated by
several examples.
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gort(L,M) :- pern(L.¥), ord(d).

pern({],[1).
peran([EIL],[FIM]) :- del(F,[E[L],H), perm{N,H).

del(E, [E{L],L).
del(E, [FIL], [FIM]} :- del{E,L,M).

ord(f1).
ord([E]}.
ord({[E,FIL]) :~ le(E,F}, orad({[FILD).

le(0,E).
ie(=s(E),=s(F)) :- le(E,F).

Figure 1. Permutation sort {natural numbers are represented by s-terms)

Logic programming allows the specification of problems st an abstract level and
nermits the exeenticn of the specifications. However, these specifications are often
very slowly executed because a lot of search is performed under the standard Prolog
computation rule. For instance, Figure 1 specifies the notion of a sorted hist (cf.
i44], p. 55): a list ¥ is a sorted version of a list L if ¥ is a permatation of L and
all elements of ¥ are in ascending order. We can use ihis Prolog program to sort
the hst [4,3,2,1] by solving the query 7- sort([4,3,2,1],5). But this runs very
inefficicnély under the standard computation rule because all permutations must be
enumerated and tested in order to sclve this goal.

Therefore several proposals have been made in order to improve the control
of Prolog prograins. Naish [36] has extended the standard computation model of
Prolog by a corcutining mechanism. He allows the addition of “wait” declarations to
vredicates. Such deciarations have the effect that the resolution of & literal is delayed
until the arguments are sufficiently instantiated. If a variable of a delayed literal is
bound to a non-variable term, this literal is woken and executed in the next step if
it is now sufficiently instantiated. In the permutation sort example, the programmer
can add a wait declaration to the predicate ord and change the ordering in the first
clause into

sors{L,M) :~ ord(¥), perm{L,M).

Now the goal 7 sort{{3,2,1],8) iz executed in the following way: After the ap-
plication of the first clause to this goal the literal ord (8} is delayed and the literal
perm([3,2,1],3) will be execuled. I S is bound to the first part of a permutation
of [3,2,1] (i.e., 2 list with two elements and a variable at the tail), then ord(s} is
activated. If the first two elements of § zre in the wrong order, then the computation
fails and another permutation is tried, otherwise axd is delayed again uniil the next
nart of the permutation is gensrated. Thus with this modificalion not af permu-
tations are completely computed and therefore the execution time is better than
in the naive approach. Naish has aldo presented an algorithm which gemerates the
wait declarations from a given program and transforms the program by reordering
the goals in a clause. Although this approach seems to be atfractive, it has some

Sy
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problems. For instance, the generation of wait declarations is based on heuristics
and therefore it is unclear whether these heuristics are generally successful. More-
over, it is possible that the annotated program flounders, i.e., all goals are delayed
which is considered as a run-time error. Hence completeness of SLD-resolution can
be lost when transforming a logic program into a program with wait declarations
(see example at the end of Section 3.3 or the goodpath example in [46]}.

Another approach to improve control has been developed by Bruynooghe’s group
[7]- They try to avoid the overhead of coroutining execution by transforming a logic
program with coroutining into a logic program with an equivalent behaviour exe-
cuted under the standard computation rule. The transformation is done in several
steps. In the first step a symbolic trace tree of a goal is created where the user has
to decide which literal is selected and whether a hiteral 1s completely executed or
only a single resolution step is made, i.e., the user must supply the system with
a good compulation rule. If a goal in the trace tree is a renaming of a goal in an
ancestor node, an arc from this goal to the ancestor node is inserted. This results in
a symbolic trace graph which is then reduced and in the last step translated into a
logic program simulating the symbolic trace under the standard computation rule.
The crucial point in this approach is Lo find a goed computation rule for the program
with respect to the initial goal. Tn a recent paper [46] a method for the automated
generation of an efficient computation rule is presented. The method is based on
a global analysis of the program by abstract interpretation techniques in order to
derive the necessary information. Since the arguments for choosing a “good” com-
putation rule are heuristics, it i3 unclear whether the transformed programs are in
any case more efficient than the original ones. Another problem is due to the fact
that their method uses a given call pattern for the initial goal. Therefore different
versions of the program are generated for different call modes of the goal.

In this paper we propose a much simpler method to improve control of logic
programs. This method ensures that the new programs have at least the same effi-
ciency as the original ones. But for a large class of programs { “generate-and-test”
programs like permutation sort) we obtain a better efficiency similar to other ap-
proaches to improve control. The basic idea is to use a functional logic language
and to translate logic programs into functional programs (without considering the
initial goal). The motivation for the integration of functional and logic program-
ming languages is to combine the advantages of both programming paradigms in
onc language: the possibility of selving predicates and equations between terms to-
gether with the efficient reducfion paradigm of functional languages. A lot of the
propesed amalgamations of functional and logic languages are based on Horn clause
logic with equality [40] where the user can define predicates by Horn clauses and
functions by {conditional} equations. Predicates are often omitted because they can
be represented as Boolean funetions. A complete operational semantics is based on
the narrowing rule {14, 29, 30]: narrowing combines unification of logic languages
with rewriting of [unctional languages, i.e., a narrowing step consists of the unifica-
tion of a subterm of the goal with the left-hand side of an equation, replacing this
subterrs by {he right-hand side of the equation and applying the unifier to the whole
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goel. Since we have to take inio account all subterms of a goal in the next parrowing
step, this naive strategy produces a large search gpace and is less efficient than SLD-
resolution (SLD stands for selecting one literal in the next resolution step). Also the
advaniage of functional languages, namely the deterministic reduction principle, is
lost by this naive approach.

Therefore a lot of research has been done to improve the narrowing strategy
without loosing completencss. Hullot [29] has shown that the restriction to basic
subterms, i.e., subterms which are not created during unification, is compicte. Fri-
bourg [15] has proved that the restriction to subterms at innermost positions is also
complete provided that all functions are reducible on all ground terms. Finally, Holl-
dobler [28] has proved cornpleteness of the combination of basic and innermost nar-
rowing where a so-called innermost reflection rule must be added for partially defined
funciions. ‘But innermost basic narrowing is not better than SLD-reselution since it
has been shown that innermost basic narrowing corresponds to SLD-resolution if a
Aunctional program is translated into a logic program by flattening [6]. On the other
hand, we can also translate a logic program into a functional one without loosing
efficiency if we use the innermost basic narrowing strategy. But now we are able to
improve the execution by simplifying the goal by deterministic rewriting before a
narrowing step is applied {rewriting is similar to reduction in functional languages
with the difference that rewriting is also applied to terms containing variables).
The simplification phase cuts down the search space without locsing completeness
128, 29].

We will see in the next sections that the operational behaviour of innermost basie
narrowing combined with simplification is similar to SLD-resolution with a particular
dynamic control rule. Hence we get an improvement in the execution comparable to
previous approaches [7, 36} but with the following advantages:

— The translation technigue from logic programs into functional logic programs is
simple.

— It ie ensured that the translated programs have at least the same efficiency as
the original ones. For many programs the efficiency i1s much better.

— It is ensured that we do not loose completeness: there exists an answer w.r.t. the
translated program iff there exisis an answer w.r.t. the original program,

The last remark is only true if we use a fair computation strategy. If we use a
backtracking implementation of SLD-resolution as in Prolog, the completeness may
be lost because of infinite computations. However, infinite paths in the search tree
can be cut hy the simplification process {15], i.e., it is also possible that we obtain
an answer from the functional logic program where the original logic program does
not terminate,

These theoretical considerations are only relevant if there is an implementation
of the functional logic language which has the same efliciency as current Prolog
implementations. Forfunately, this is the case. In [19, 21, 24} it has been shown
that it is possible o implement a funclional logic language very efficiently by ex-
tending the currently known Prolog implemnentation techniques {47]. The language
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ALF (“Algebraic Logic Functional language”} is based on the operational seman-
tics sketched above. Innermest basic narrowing and simplification is implemented
without overhead in comparison to Prolog’s computation strategy, i.e., functional
programs are executed with the same efficiency as their relational equivalents by
SLD-resclution (see {21] for benchmarks). Therefore it is justified to improve the
contral af Jogle programs by translation into a functional logic language.

In the next section we give a precise description of ALF’s operational semantics
and in Section 3 we present our approach to improve control of logic programs in
more detail.

2 Operational semantics of ALF

As mentioned in the previous section, we want to improve the control behaviour of
logic programs by translating them into a functional logic language. We have also
mentioned that in order to compete with SLD-resolution we have to use a functional
logic language with a refined opcrational sernantics, namely innermost basic nar-
rowing and simplification. Hence the target language of the translation process is
the langnage ALF [19, 21] which is based on this semantics. ALT has more features
than actually used iIn this paper, e.g., a module systern with parameterization, a
type system based on many-sorted logic, predicates which arc resolved by resolution
etc. {see {25] for details). In the following we outline the operational semantics of
ALF in order to understand the translation scheme presenied in the next sections.

ALF is a constructor-based language, i.e., the user must specify for each symbol
whether it i1s a constructor or a defined function. Constructors must not be the
outermost symbol of the left-hand side of a defining equation, i.c., constructor terms
are always irreducible. Hence constructors are used to build data types, and defined
functions are operations on these data types {similarly to functional languages like
ML [27] or Miranda [45]). The distinction between constructors and defined function
symbols is necessary to define the notion of an innermost position {15},

An ALF program consists of a sct of (conditional} equations which are used
in 1wo ways. In a parrowing step an equation is applied to compute a solution of
a goal (i.e., variables in the goal may be bound to terrus), whereas in a rewrite
step an equation is applied to simplify a goal (i.e., without binding goal variables).
Therefore we distinguish belween narrowing rules (equations applied in narrowing
steps) and rewrite rules {equations applied in rewrite steps). Usually, all cenditional
equations of an ALF program are used as narrowing and rewrite rules, bul it is
also possible to specify rules which are only used for rewriting. Typically, these
tules are inductive axioms or CWA-valid axioms (see below). The application of
such rules for simplification can reducc the search space and is justified if we are
interested in ground-valid answers [15, 39] (i.c., answers which are valid for each
ground substitution applied to it).

Figure 2 shows an ALF module to sort a list of naturals. Naturals are represented
by the consiructors 0 and s, true and false are the constructors of the data type





