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Outline of an Object-Oriented Calculus of 
Higher Type 

(Abstract of Lecture) 

Hassan Aït-Kaci 

haklllprl.dec.com 

Digital Equipment Corporation, Paris Research Laboratory 
85, avenue Victor Hugo, 92500 Rueil-Malmaison, France 

Object-oriented programming was introduced (essentiaIly thanks to SmaIltalk) 
as a bag of purely empirical, but nonetheless seductive, ideas. The most impor
tant of these were class hierarchies, object instance-variables, methods, message
passing, self, and object identity. Thus, this set of concepts is by no means a 
monolithic entity but consists of severa! orthogonal notions de facto, and sorne
what incidentaIly, amalgamated under this same qualifier. 

After adopting an initial attitude towards these ideas between scorn and 
derision, formalists have recently made a radical change of opinion. Several, 
among the best, have taken a sudden interest in forma!izing object-oriented 
programming and proposed theoretical constructions of impressive mathematical 
complexity in or der to explain rigorously the foregoing empirical concepts. This 
is in evident contrast with their intuitive understanding which is nevertheless of 
a disarmingly elementary sim pli city. 

Be that as it may, 1 strongly believe, as a scientist, that a sound scientific 
approach requires that a formaI rendition should be given which characterizes 
precisely and exactly the essence of an empirical phenomenon. On the other 
hand, 1 am no less convinced that the tools and efforts employed in achieving 
this must be of intrinsic complexity at most comparable to that of the object 
of study. Even further, 1 think that formalization has a justification only if it 
pays in return the object of study by simplifying it, generalizing it", or better 
yet, improving it. From this standpoint, then, it is clear that the formaI models 
of object-oriented programming currently offered are blatantly inadequate. 

Where did these formalists go wrong? First of aIl, they simply omitted to 
ask themselves the question, necessary a priori, whether everything in object
oriented programming's bag of ideas were of a common essence. Secondly, and 
more importantly, they did not question the actual need for sorne of these fea
tures nor their use. For example, is it reaIly necessary to distinguish between 
instance-variables and method names? Or, is it clean to introduce the concept 
of "self" as it is done to allow an object to refer to itself? Or, is message-passing 
anything other than calling a curried function as it has been partiaIly evaluated 
on its first-argument? And if 80, why this asymmetry limiting this capability 
only to first arguments? Finally, should the very idea of inheritance not rather 
rest on a notion of approximation, quite more advantageous for static analysis, 
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instead of a mere arbitrary data organization scheme for supporting code sharing 
and overloading? 

Taking these questions as a guideline, as weil as a few others reassessing 
taken-for-granted mottos related to object of higher-types (e.g., left contravari
ance), 1 will outline SCOOP-a Simple Calculus for Object-Oriented Program
ming. The aim of SCOOP is to embody a formaI calculus particularly simple and 
uniform based on approximation structures of first and higher types. It is meant 
to account rigorously for an essential part of object-orientation (namely, inher
itance, instance-variables, methods, self-reference, and message-passing) while 
staying faithful to their empirical intuition. It simplifies and demystifies the con
cept of self-reference that causes awful complications in other formaI accounts. 
In addition, SCOOP brings about substantial improvements over the empiri
cal concepts as it eliminates frustrating discrepancies such as the asymmetry of 
message-passing towards first argument only, or the useless distinction between 
instance-variables and methods. Finally, it offers to construe of inheritance as 
approximation (realized through a structural endomorphism) that fully com
mutes with evaluation. This is quite a novel insight as it provides the calculus 
with an automatic power of abstract interpretation based on object refinement. 
In other words, it allows to compile a program with the same interpreter used 
at run-time. 

Although this research is still at its infancy, 1 believe that SCOOP and the 
methodology on which it rests offer an exciting potential. 1 shall describe the op
erational model of SCOOP in sorne detail, and illustrate its behavior on con crete 
examples. 

This article was processed using the lffi.TEX macro package with LLN CS style 
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High-Level-Replacement Systems for Equational 
Algebraic Specifications 

H.Ehrig 

Fachbereich Informatik, Technische Universitllt Berlin 
D-1000 Berlin 10 Germany 

F. Parisi-Presicce 

Dipartimento di Matematica Pura ed Applicata, Università de L'Aquila 
1-67010 Coppito (AQ) Italy 

Abstract Equational algebraic specifications and the corresponding 
specification morphisms have been defined in the literature in several ways. 
Although apparently equivalent, they are significantly different with respect 
to standard categorical constructions, leading to categories of algebraic 
spacifications which are not equivalent. The nonequivalence of these 
categories of algebraic specifications is also significant in the context of 
high-level-replacement (HLR) systems, a generalization at the categorical 
level of the weil known algebraic approach to graph granunars based on 
double pushout. Unexpectedely, only for sorne of the categories the 
properties needed to prove the Church-Rosser, Parallelism and Concurrency 
Theorems for High-Level-Replacement systems are valid. 

1 Introduction 

The use of algebraic specifications for the definition of abstract data types dates 
back to at least 1974 and has influenced, since then, the theoretical foundations of 
sorne forrnal rnethods for the developrnent of reliable software as weIl as sorne 
applications. The 'sirnplest' framework adopted for the algebraic specifications is the 
equational one, in which properties of the functions being defined are expressed as 
universally quantified equations between pairs of terms. Several authors have used and 
analyzed equational specifications and the differences among the formalizations have 
often been considered negligible. These differences have then beenextended to distinct 
formalizations of the notion of specification rnorphisrn f: SPECI ~ SPEC2, all 
based on the accepted definition of signature rnorphisrn fI;: SIGI ~ SIG2 , but 

differing in the way the equations are related. Sorne definitions of specification 
rnorphisrns require that the translation f#(El) of the equations of SPECI induced by 
the signature rnorphisrn fI; be among the equations of SPEC2, other rnorphisrns 
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require only that they be derivable (in the usual equational logic) from those of 
SPEC2. 

Different morphisms give rise to different categories in which the standard 
categorical constructions are carried out. These constructions are typically limits or 
colimits [9] which model, for example, the modular definition of specifications via the 
mechanism of pararnetrization and pararneter passing. We have shown that two of the 
four categories considered are equivalent and that the three non equivalent categories are 
consistent with respect to pushout constructions but not with respect to pullbacks, 
that is, the functors relating the different categories do not preserve pushouts and 
pullbacks, but while the different pushout objects have the sarne category of models, 
the different pullbacks do not. The differences arnong these categories of algebraic 
specifications are even more significant for the corresponding High Level Replacement 
(HLR) Systems [6,7]. These systems generalize at the categoricallevel the algebraic 
approach to graph grarnmars based on a double pushout construction [4], in which a 
production p consists of two morphisms L ~ K ~ R (selected from a subset M of 
morphisms) and a direct derivation p: G ~ H from G ta H consists of two pushouts, 
in the category under consideration, as in the following diagrarn 

L" K .R 

~ ~ ~ 
G .... ~--- C----t.~ H 

The object C represents the context which is not affected by the transformation and 
which is "glued" ta the new part R via the interface K. 
The HLR-systems can he seen as a categorical rewriting system in which the original 
rewriting of graphs has been replaced by the rewriting of other structures, such as 
algebraic specifications, hypergraphs, graphics, place-transition nets, jungles, etc .. 
Applications of these replacement systems range from modular system design [15, 16] 
in which derivations can be automatically translated to interconnections of the 
modules whose interfaces have been used as productions; ta logic prograrnming [2, 3] 
in which derivations simulate the refutation procedure; ta mle-based systems [10, 8] 
with the analysis of conflicting mies and the consequent reduction of the search space. 
Among the important properties of these rewriting systems, we can list the Church
Rosser Theorem and the Parallelism and Concurrency Theorems. The CR Theorem 
indicates when the application of two mies (or productions) is independent of the order 
in which they are applied; the Parallelism Theorem states that the effect of applying 
sequentially two independent productions is equivalent to the simultaneous application 
of (the coproduct of) the productions, while the Concurrency Theorem handles the case 
of the sequential application of two mIes which are not independent. In this paper we 
have refined the axiomatic proofs of these Theorems in the context of HLR-systems 
and shown that only one of the nonequivalent categories of algebraic specifications 
satisfies the HLR properties which guarantee all three results, while for the other ones 
only subsets of these properties are satisfied depending on the appropriate choice of the 
distinguished c1ass M of morphisms used in the productions. This indicates that only 
one of the formalizations of equational specifications is the most appropria te ta fully 
exploit, for exarnple, the correspondence hetween derivations and interconnections of 
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modular systems [15]. 
In the next section, we define the different categories and characterize, for each of 

them, the mono- , epi- , and iso-morphisms, the initial and final objects and the 
categorical constructions of pushouts and pullbacks. In section 3, we present the 
different results, without proofs, concerning the weak and (Iack of) strong equivalence 
between pair of categories. In section 4, after reviewing briefly the Church-Rosser- , 
Parallelism- , and Concurrency Theorems, we show which of the HLR properties that 
imply them are satisfied by the different categories with different choices of the class 
M of morphisms. Sorne open problems are stated in the last section. Ali proofs are 
omitted and can be found (in painstakingly details) in [13]. 

2 Categories of Equational Algebraic Specifications 

We first define five different alternatives for categories of standard equational 
algebraic specifications that have been introduced in the literature, where in each case 
an equational algebraic specification SPEC = (S, OP, E) consists [9] of a set S of 
sorts, a set OP of operation symbols N: si ... sn ~ s and a set E of equations of the 
form (X, tl, t2) with tl, t2 terms of the same sort with variables X .. 

2.1 Definition 

Type D: The specification morphisms f: SPEC ~ SPEC' are signature morphisms 
f E = ( fS : S ~S', fOp: OP ~OP' ) satisfying fE ( N: si ... sn ~ s ) = 
fOp{N} : fS(sl) ... fS(sn) ~ fS(s) and such that the translated equations f#(E) are 

derivable from E' (see [9, 16]). 
Type 1: Same as Type D, but with the condition f#(E) ç cl(E') where cl(E') is the 
closure of E' under derivability. 
Type 2: Same as Type D, but with the condition f#(E) ç E' [6,7,15, Il]. 
Type 1': Type 2 restricted to specifications SPEC = (S, OP, E) where E is already 
closed under derivability (theories in the sense of [1]). 
Type 3: Specifications SPEC = (S, OP, E) where 

+ the set of equations is labelled, and different labels e may correspond to the same 
triple (X, tl, 12) representing the equation e:tl = 12, and 

+ specification morphisms are triples f = (fS:S ~ S', fOp:OP ~ OP', fE:E ~ E') 

with the usual compatibility properties for fS and fOp and for (e:tl = 12) E E we have 
(fE(e):f#(tl) = f#(12» E E' (see [12». 

In fact type D is most often used in the literature and it is well-known that the type D
condition "f#(E) derivable from E' " is equivalent to the type l-condition "f#(E) ç 
cl(E')" in the sense that both types define the same category. In the following we 
will only use type 1 in order to avoid explicit notions of derivability. 
The category having algebraic specifications as objects and morphisms of type i will 
be denoted by SPECi for i = 1,2,3, 1'. We use the terminology type l' because the 
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