
H. Kirchner G. Levi (Eds.)

Algebraic and Logic
Programming
Third International Conference
Volterra, Italy, September 2-4, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VI

Program Committee

Egidio Astesiano (Genova)
Hubert Comon (Orsay)
Alexander Herold (München)
Joxan Jaffar (Yorktown Heights)
Hélène Kirchner (Nancy), Co-chair
Jan Willem Klop (Amsterdam)

Giorgio Levi (Pisa), Co-chair
Horst Reichel (Dresden)
Mario Rodriguez-Artalejo (Madrid)
Vijay Saraswat (Palo Alto)
Gert Smolka (Saarbrücken)

Professor Wolfgang Wechler from Würzburg University, the initiator ofthis series,
was initially a member of this committee. His premature and sudden death has left
his colleagues and friends very shocked by this tragic event.

Local Organization

Roberto Bagnara, Piero Bonatti, Maurizio Gabbrielli, Roberto Giacobazzi, Anna
Maria Manunta, Maria Chiara Meo, Danilo Montesi, Stefania Pellegrini, Chiara Tri
comi.

List of Referees

M. Alpuente, R. Amadio, J.-M. Andreoli, J. Andrews, 1. Bethke, A. Boudet,
A. Brodsky, F. Bry, A. Corradini, G. Costa, E. Domenjoud, M. Falaschi, G. Ferrari,
T. Frühwirth, D. de Frutos Escrig, M. Gabbrielli, A. Gavilanes-Franco, R. Gerth,
R. Giacobazzi, A. Gil-Luezas, A. Giovini, E. Hamoen, N. Heintze, M. Henz,
D. Hofbauer, M.T. Hortala-Gonzruez, C. Jutla, J .R. Kennaway, C. Kirchner, F. Klay,

G. Kucherov, T.M. Kuo, H. Leiss, P. Lim, D. Lugiez, M. Maher, P. Mancarella,
L. Maranget, B. Marre, K. Marriott, M. Martelli, A. Masini, A. Middeldorp,
M. Meier, E. Moggi, E. Monfroy, R. Nieuwenhuis, F. Ore jas, Y. Ortega-Mallén,
V. van Oostrom, C. Palamidessi, P. Panangaden, D. Pedreschi, M. Posegga,
S.D. Prestwich, L. Puel, G. Reggio, P. Réty, F. Rossi, J. Rouyer, A. Rubio,
M. Rusinowitch, A. Salibra, J. Schimpf, P.-Y. Schobbens, B. Thomsen, R. Treinen,
L. Vigneron, P. Viry, M. Vit tek , A. Voronkov, F.-J. de Vries, R.C. de Vrijer,
J. Würtz, D. Yankelevich, R. Yap, W. Zadrozny, H. Zantema.

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Contents

Outline of an object-oriented calculus of higher type (invited talk) 1
H. Ai~-Kaci (Digital Labs, Paris)

High-level-replacement systems for equational algebraic specifications 3
H.Ehrig (Technische Universitat Berlin),
F.Parisi-Presicce (Università de L'Aquila)

Termination of rewrite systems by elementary interpretations 21
P. Lescanne (CRIN and INRIA-Lorraine, Nancy)

Termination of order-sorted rewriting .. 37
1. Gnaedig (CRIN and INRIA-Lorraine, Nancy)

Generalized sufficient conditions for modular termination of rewriting 53
B. Gram/ich (Universitat Kaiserslautern)

A theory of first-order built-in's of Prolog 69
K.R. Apt (CWI and University of Amsterdam),
E. Marchiori (CWI and Università di Padova),
C. Palamidessi (Università di Pisa)

Fixpoint semantics for partial computed answer substitutions and cali
patterns .. 84
M. Gabbrielli, M.C. Meo (Università di Pis a)

Oracle semantics for Prolog .. 100
R. Barbuti (Università di Pisa),
M. Codish (Katholieke Universiteit Leuven),
R. Giacobazzi (Università di Pis a),
M. Maher (IBM T.J. Watson Research Center, Yorktown Heights)

On the relation between primitive recursion, schematization and
divergence ... 115
M. Hermann (CRIN and INRIA-Lorraine, Nancy)

Term rewriting with sharing and memoÏzation 128
B. Hoffmann (Universitat Bremen)

Definitional trees .. 143
S. Antoy (Portland State University, Portland)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

VIII

Multiparadigm logic programming (invited talk) 158
J. Meseguer (SRI International, Menlo Park)

Non-linear real constraints in constraint logic programming 201
Hoon Hong (Johannes Kepler University, Linz)

A general scheme for constraint functionallogic programming 213
F.-J. Lopez-Fraguas (Universidad Complutense de Madrid)

Incrementai rewriting in narrowing derivations 228
M. Hanus (Max-Planck-Institut für Informatik, SaarbTÜcken)

Counterexamples to completeness results for basic narrowing
(Extended Abstract) ... 244
A. Middeldorp (CWI, Amsterdam)
E. Hamoen (Vrije Universiteit, Amsterdam)

Uniform narrowing strategies ... 259
R. Echahed (IMAG-LGI, Grenoble)

Proof by consistency in constructive systems with final algebra semantics 276
O. Lysne (University of Oslo)

A fast algorithm for ground normal form analysis 291
R. Bündgen, H. Eckhardt (Universitiit Tübingen)

Eta-conversion for the languages of explicit substitutions 306
T. Hardin (INRIA-Roquencourt, Le Chesnay)

Serialisation analysis of concurrent logic programs 322
A. King, P. Soper (University of Southampton)

Implementation of a toolset for prototyping algebraic specifications
of concurrent systems ... 335
A. Giovini, F. Morando, A. Capani (Università di Genova)

Axiomatizing permutation equivalence in the À-calculus 350
C. Laneve, U. Montanari (Università di Pisa)

A CLP View of Logic Programming (invited talk) 364
M. Maher (IBM T.J. Watson Research Center, Yorktown Heights)

Partial deduction of logic programs w.r.t. well-founded semantics 384
C. Aravindan, Phan Minh Dung (Asian Institute of Technology, Bangkok)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

IX

The finiteness of logie programming derivations403
P. Balbiani (IRIT, Toulouse)

Theorem proving for hierarchie first-order theories420
L. Bachmair (SUNY at Stony Brook), H. Ganzinger, U. Waldmann
(Max-Planck-Institut für Informatik, Saarbr'Ûcken)

A goal oriented strategy based on complet ion435
R. Socher-Ambrosius (Max-Planck-Institut for Informatik, Saarbr'Ûcken)

On n-syntaetie equational theories ... 446
A. Boudet, E. Conte jean (LRI, Université Paris-Sud, Orsay)

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

Outline of an Object-Oriented Calculus of
Higher Type

(Abstract of Lecture)

Hassan Aït-Kaci

haklllprl.dec.com

Digital Equipment Corporation, Paris Research Laboratory
85, avenue Victor Hugo, 92500 Rueil-Malmaison, France

Object-oriented programming was introduced (essentiaIly thanks to SmaIltalk)
as a bag of purely empirical, but nonetheless seductive, ideas. The most impor
tant of these were class hierarchies, object instance-variables, methods, message
passing, self, and object identity. Thus, this set of concepts is by no means a
monolithic entity but consists of severa! orthogonal notions de facto, and sorne
what incidentaIly, amalgamated under this same qualifier.

After adopting an initial attitude towards these ideas between scorn and
derision, formalists have recently made a radical change of opinion. Several,
among the best, have taken a sudden interest in forma!izing object-oriented
programming and proposed theoretical constructions of impressive mathematical
complexity in or der to explain rigorously the foregoing empirical concepts. This
is in evident contrast with their intuitive understanding which is nevertheless of
a disarmingly elementary sim pli city.

Be that as it may, 1 strongly believe, as a scientist, that a sound scientific
approach requires that a formaI rendition should be given which characterizes
precisely and exactly the essence of an empirical phenomenon. On the other
hand, 1 am no less convinced that the tools and efforts employed in achieving
this must be of intrinsic complexity at most comparable to that of the object
of study. Even further, 1 think that formalization has a justification only if it
pays in return the object of study by simplifying it, generalizing it", or better
yet, improving it. From this standpoint, then, it is clear that the formaI models
of object-oriented programming currently offered are blatantly inadequate.

Where did these formalists go wrong? First of aIl, they simply omitted to
ask themselves the question, necessary a priori, whether everything in object
oriented programming's bag of ideas were of a common essence. Secondly, and
more importantly, they did not question the actual need for sorne of these fea
tures nor their use. For example, is it reaIly necessary to distinguish between
instance-variables and method names? Or, is it clean to introduce the concept
of "self" as it is done to allow an object to refer to itself? Or, is message-passing
anything other than calling a curried function as it has been partiaIly evaluated
on its first-argument? And if 80, why this asymmetry limiting this capability
only to first arguments? Finally, should the very idea of inheritance not rather
rest on a notion of approximation, quite more advantageous for static analysis,

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

2

instead of a mere arbitrary data organization scheme for supporting code sharing
and overloading?

Taking these questions as a guideline, as weil as a few others reassessing
taken-for-granted mottos related to object of higher-types (e.g., left contravari
ance), 1 will outline SCOOP-a Simple Calculus for Object-Oriented Program
ming. The aim of SCOOP is to embody a formaI calculus particularly simple and
uniform based on approximation structures of first and higher types. It is meant
to account rigorously for an essential part of object-orientation (namely, inher
itance, instance-variables, methods, self-reference, and message-passing) while
staying faithful to their empirical intuition. It simplifies and demystifies the con
cept of self-reference that causes awful complications in other formaI accounts.
In addition, SCOOP brings about substantial improvements over the empiri
cal concepts as it eliminates frustrating discrepancies such as the asymmetry of
message-passing towards first argument only, or the useless distinction between
instance-variables and methods. Finally, it offers to construe of inheritance as
approximation (realized through a structural endomorphism) that fully com
mutes with evaluation. This is quite a novel insight as it provides the calculus
with an automatic power of abstract interpretation based on object refinement.
In other words, it allows to compile a program with the same interpreter used
at run-time.

Although this research is still at its infancy, 1 believe that SCOOP and the
methodology on which it rests offer an exciting potential. 1 shall describe the op
erational model of SCOOP in sorne detail, and illustrate its behavior on con crete
examples.

This article was processed using the lffi.TEX macro package with LLN CS style

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

High-Level-Replacement Systems for Equational
Algebraic Specifications

H.Ehrig

Fachbereich Informatik, Technische Universitllt Berlin
D-1000 Berlin 10 Germany

F. Parisi-Presicce

Dipartimento di Matematica Pura ed Applicata, Università de L'Aquila
1-67010 Coppito (AQ) Italy

Abstract Equational algebraic specifications and the corresponding
specification morphisms have been defined in the literature in several ways.
Although apparently equivalent, they are significantly different with respect
to standard categorical constructions, leading to categories of algebraic
spacifications which are not equivalent. The nonequivalence of these
categories of algebraic specifications is also significant in the context of
high-level-replacement (HLR) systems, a generalization at the categorical
level of the weil known algebraic approach to graph granunars based on
double pushout. Unexpectedely, only for sorne of the categories the
properties needed to prove the Church-Rosser, Parallelism and Concurrency
Theorems for High-Level-Replacement systems are valid.

1 Introduction

The use of algebraic specifications for the definition of abstract data types dates
back to at least 1974 and has influenced, since then, the theoretical foundations of
sorne forrnal rnethods for the developrnent of reliable software as weIl as sorne
applications. The 'sirnplest' framework adopted for the algebraic specifications is the
equational one, in which properties of the functions being defined are expressed as
universally quantified equations between pairs of terms. Several authors have used and
analyzed equational specifications and the differences among the formalizations have
often been considered negligible. These differences have then beenextended to distinct
formalizations of the notion of specification rnorphisrn f: SPECI ~ SPEC2, all
based on the accepted definition of signature rnorphisrn fI;: SIGI ~ SIG2 , but

differing in the way the equations are related. Sorne definitions of specification
rnorphisrns require that the translation f#(El) of the equations of SPECI induced by
the signature rnorphisrn fI; be among the equations of SPEC2, other rnorphisrns

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

4

require only that they be derivable (in the usual equational logic) from those of
SPEC2.

Different morphisms give rise to different categories in which the standard
categorical constructions are carried out. These constructions are typically limits or
colimits [9] which model, for example, the modular definition of specifications via the
mechanism of pararnetrization and pararneter passing. We have shown that two of the
four categories considered are equivalent and that the three non equivalent categories are
consistent with respect to pushout constructions but not with respect to pullbacks,
that is, the functors relating the different categories do not preserve pushouts and
pullbacks, but while the different pushout objects have the sarne category of models,
the different pullbacks do not. The differences arnong these categories of algebraic
specifications are even more significant for the corresponding High Level Replacement
(HLR) Systems [6,7]. These systems generalize at the categoricallevel the algebraic
approach to graph grarnmars based on a double pushout construction [4], in which a
production p consists of two morphisms L ~ K ~ R (selected from a subset M of
morphisms) and a direct derivation p: G ~ H from G ta H consists of two pushouts,
in the category under consideration, as in the following diagrarn

L" K .R

~ ~ ~
G ~--- C----t.~ H

The object C represents the context which is not affected by the transformation and
which is "glued" ta the new part R via the interface K.
The HLR-systems can he seen as a categorical rewriting system in which the original
rewriting of graphs has been replaced by the rewriting of other structures, such as
algebraic specifications, hypergraphs, graphics, place-transition nets, jungles, etc ..
Applications of these replacement systems range from modular system design [15, 16]
in which derivations can be automatically translated to interconnections of the
modules whose interfaces have been used as productions; ta logic prograrnming [2, 3]
in which derivations simulate the refutation procedure; ta mle-based systems [10, 8]
with the analysis of conflicting mies and the consequent reduction of the search space.
Among the important properties of these rewriting systems, we can list the Church
Rosser Theorem and the Parallelism and Concurrency Theorems. The CR Theorem
indicates when the application of two mies (or productions) is independent of the order
in which they are applied; the Parallelism Theorem states that the effect of applying
sequentially two independent productions is equivalent to the simultaneous application
of (the coproduct of) the productions, while the Concurrency Theorem handles the case
of the sequential application of two mIes which are not independent. In this paper we
have refined the axiomatic proofs of these Theorems in the context of HLR-systems
and shown that only one of the nonequivalent categories of algebraic specifications
satisfies the HLR properties which guarantee all three results, while for the other ones
only subsets of these properties are satisfied depending on the appropriate choice of the
distinguished c1ass M of morphisms used in the productions. This indicates that only
one of the formalizations of equational specifications is the most appropria te ta fully
exploit, for exarnple, the correspondence hetween derivations and interconnections of

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

5

modular systems [15].
In the next section, we define the different categories and characterize, for each of

them, the mono- , epi- , and iso-morphisms, the initial and final objects and the
categorical constructions of pushouts and pullbacks. In section 3, we present the
different results, without proofs, concerning the weak and (Iack of) strong equivalence
between pair of categories. In section 4, after reviewing briefly the Church-Rosser- ,
Parallelism- , and Concurrency Theorems, we show which of the HLR properties that
imply them are satisfied by the different categories with different choices of the class
M of morphisms. Sorne open problems are stated in the last section. Ali proofs are
omitted and can be found (in painstakingly details) in [13].

2 Categories of Equational Algebraic Specifications

We first define five different alternatives for categories of standard equational
algebraic specifications that have been introduced in the literature, where in each case
an equational algebraic specification SPEC = (S, OP, E) consists [9] of a set S of
sorts, a set OP of operation symbols N: si ... sn ~ s and a set E of equations of the
form (X, tl, t2) with tl, t2 terms of the same sort with variables X ..

2.1 Definition

Type D: The specification morphisms f: SPEC ~ SPEC' are signature morphisms
f E = (fS : S ~S', fOp: OP ~OP') satisfying fE (N: si ... sn ~ s) =
fOp{N} : fS(sl) ... fS(sn) ~ fS(s) and such that the translated equations f#(E) are

derivable from E' (see [9, 16]).
Type 1: Same as Type D, but with the condition f#(E) ç cl(E') where cl(E') is the
closure of E' under derivability.
Type 2: Same as Type D, but with the condition f#(E) ç E' [6,7,15, Il].
Type 1': Type 2 restricted to specifications SPEC = (S, OP, E) where E is already
closed under derivability (theories in the sense of [1]).
Type 3: Specifications SPEC = (S, OP, E) where

+ the set of equations is labelled, and different labels e may correspond to the same
triple (X, tl, 12) representing the equation e:tl = 12, and

+ specification morphisms are triples f = (fS:S ~ S', fOp:OP ~ OP', fE:E ~ E')

with the usual compatibility properties for fS and fOp and for (e:tl = 12) E E we have
(fE(e):f#(tl) = f#(12» E E' (see [12».

In fact type D is most often used in the literature and it is well-known that the type D
condition "f#(E) derivable from E' " is equivalent to the type l-condition "f#(E) ç
cl(E')" in the sense that both types define the same category. In the following we
will only use type 1 in order to avoid explicit notions of derivability.
The category having algebraic specifications as objects and morphisms of type i will
be denoted by SPECi for i = 1,2,3, 1'. We use the terminology type l' because the

B
IB

LI
O

TH
E

Q
U

E
 D

U
 C

E
R

IS
T

